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ABSTRACT

This study shows that with a certain expression of a standard econometric test we can detect regional pandemic status changes early from 
information already embedded in the actual data of the daily number of new infections. The COVID-19 pandemic and taken countermeasures 
cause substantial social and economic costs. The lack of knowledge and experience concerning the development of the regional virus spread 
impedes cost-saving timely policy decisions when fighting the pandemic. The ability to detect regional pandemic status changes and especially 
the beginning of a phase of increasing growth in the number of new infections early is extremely important. Here, we show that with a certain 
expression of a standard econometric test we can detect regional pandemic status changes early from information already embedded in the actual 
data of the daily number of new infections. For the emerged second COVID-19 cycles in Australia, Austria, Germany, Italy, the Republic of 
Korea, and the United Kingdom the study shows, that we can identify pandemic status changes earlier and in a statistically reliable way when 
compared with a purely visual inspection of the data. In addition, we identify in our study different patterns of emerging COVID-19 pandemic 
cycles. These range from an immediately growing number of new infections to continuously following short phases of stability that altogether 
constitute a complete pandemic cycle. A combination of the results of the proposed test and test strategy with analysis from other scientific 
disciplines (especially epidemiological analysis) can provide further insights into the broader nature of pandemic status changes and patterns 
in emerging COVID-19 pandemic cycles.
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INTRODUCTION

Epidemiological theory models the spread of a virus over 
time often in the form of a cycle. The growth rate of daily 
new infections first increases and then from a certain point 
in time on decreases until it reaches a value of nil.[1-4] In 
practice and as in the case of the COVID-19 pandemic, the 
regional development of the virus spread in time can consist 
of several of these cycles. In countries that have taken early 
and successful non-pharmaceutical countermeasures in their 
first cycle such as Austria, China, Germany,[5-9] we see that 
the development of the number of daily new infections seems 
to be in line with theory [Figure 1]. Although the number of 
daily new infections between the cycles does not fall to zero, 
the mean of the empirical distribution of daily new infections 
between two cycles remains stable on a low level. From an 

ex-post perspective, these cycles can be easily identified. When 
fighting the pandemic policy management tries to minimize 
overall costs,[10] including the costs of non-pharmaceutical 
countermeasures.[11-15] It is therefore important to understand 
the current situation of the pandemic development as early 
as possible. Obviously, it makes a difference, if we are in a 
temporarily stable situation, or in a situation with a 1-time shift 
of the level of new infections, or in a phase of a continuously 
increasing growth rate of new infections. Especially at the 
beginning of a pandemic cycle, when the number of new 
infections grows at a very high rate, it clearly makes a 
difference, if we can identify the start of this development 
1 week or even a few days earlier than otherwise. In general, 
the earlier a status change can be identified the faster 
countermeasures can be taken to limit social and economic 
costs. For such early assessments, we must distinguish between 
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pandemic situations where we are in a stable situation with 
maybe only a few daily outliers of the number of new infections 
or face a sustainable change in the level of new infections or 
find ourselves at the beginning of a continuously growing 
number of daily new infections.

In this study we propose a certain expression of a standard 
econometric test. With a specific interpretation of the test 
results and with continuous testing we can identify status 
changes of a regional pandemic development for a determined 
level of significance. For the analyzed time series of new 
COVID-19 infections in Australia, Austria, Germany, Italy, 
the Republic of Korea, and the United Kingdom we see that 
the test can detect pandemic status changes comparatively 
early from actual daily observations especially when 
compared with a purely visual inspection of the development 
of the number of new infections. In addition, we can learn 
about the patterns of a regional COVID-19 pandemic 
development. A test strategy that continuously looks for 
pandemic status changes in over-lapping time intervals 
can support health and economic policy management when 
fighting the pandemic.

METHODS

Using general theoretical and empirical findings of virus 
spread behavior and especially of COVID-19 behavior 
[16,17] we can exhaustively assume, that the time series of 
the number of daily new COVID-19 infections shows at 
the beginning of an emerging pandemic cycle or generally 
at a status change either an infinite variance or a random 
behavior around a deterministic trend or a random behavior 
around a stochastic trend [Figures 1 and 2]. Following our 
aim to identify changes in the status of the pandemic as early 
as possible we are not primarily interested in distinguishing 
between these cases.

To detect a systematic increase in the daily number of new 
infections we use Augmented Dickey-Fuller (ADF) tests.
[18,19] In general, ADF tests investigate the null hypothesis 
that an analyzed time series - here the number of daily new 
COVID-19 infections - exhibits an infinite variance (a unit 
root).

We define the test equation of a standard ADF test without a 
deterministic time trend and only with a deterministic intercept 
μ and with as much lag variables p to account for a possible 
corresponding autoregressive structure in the data generating 
process. (Otherwise, the test results would be unintendedly 
influenced).
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with ∆xt = difference of number of daily new infections at 
time t and t-1, α* = difference between coefficient of the 
pure autoregressive process p and 1, xt-1 = number of daily 
new infections at time t-1, αi* = coefficient of the ith lag 
term, p = number of lags of the assumed autoregressive 
process according to Schwarz information criterion, t = time, 
εt = disturbance term, i.i.d.= identical and independently 
distributed, (0, σ2) = distributed with an expected value of nil 
and a variance of σ2.

This way we obtain a test equation that leads for a 
defined level of significance to the non-rejection of the 
null hypothesis when the analyzed time series shows 
either an infinite variance (a unit root) or a deterministic 
trend behavior (and not a unit root). The latter is the case 
because for an existing deterministic time trend in the data 
and in the absence of a deterministic trend component in 
the test equation the here applied ordinary least squares 
estimation technique can only maximize the total variance 
explained by setting α* = 0, thereby forcing the test to 
accept the null hypothesis. But this is the same situation as 
if the test identifies an infinite variance in the time series. 
An acceptance of the null hypothesis for our so defined 
pandemic status change test therefore means the detection 
of a stochastic or a deterministic trend in the data.

In general, the specification of a test influences the achieved 
results. We have defined the test equation in such a way 
that best suits our needs to reliably identify pandemic status 
changes.

●	 The frequently given problem of ADF testing, especially 
when the number of observations is small, that trend 
stationary time series processes can be approximated 
very well by processes with a unit root (and vice 
versa)[20-22] here provides no problem. In our context, we 
are not interested in distinguishing between these cases as 
they both correspond to a pandemic status change. We have 
defined our test equation in such a way that it accepts the 
null hypothesis not only for a stochastic trend (a unit root) 
but also in case of a deterministic time trend in the data 
generating process. Normally undetected structural breaks 
in time series data can lead to an under-rejection of the null 
hypothesis. When we define a structural break in a broader 
sense also as pandemic status change the acceptance of the 
null hypothesis in such cases is an adequate result within 
our test logic

●	 With respect to deterministic seasonality, the general 
recommendation for unit root testing is to use seasonal 
unadjusted data as otherwise, adjustments distort the 
properties of the data[21] and there would be a tendency to 
reject the null less often than it should be rejected.[21] 

●	 In case of undetected non-stationary seasonality in the data 
the results of our ADF tests, that do not explicitly account 
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for unit roots at seasonal frequencies, remain valid as long 
as there are enough lag terms in the test equation.[23] We 
identify this number by the conservative Schwarz criterion. 
(When compared with the alternative Akaike criterion the 
Schwarz criterion is more conservative. Conservatively 
accounting for a possible autoregressive structure in the 
data with enough lag variables in the test equation also 
avoids the tendency of over rejecting the null when it is 
true).

We apply our test continuously to overlapping time intervals, 
each time analyzing 35 daily observations of the number 
of new COVID-19 infections. For each next test, we 
roll the underlying time interval 7 days further. We have 
chosen 35 daily observations (5 weeks) for each test as the 
ADF test usually requires some observations to model an 
underlying lag structure of the data generating process. We 
are so losing degrees of freedom but can keep a minimum 
number of approximately 30 observations as a minimum 
prerequisite for statistical inference. (Choosing the number 
of observations must consider the trade-off between 
appreciated statistical properties and the requirement to 
analyze most actual data. In addition, we acknowledge, that 
with the here underlying small number of observations of 
each test we do not fulfill the assumptions for asymptotical 
inferences.) For each next test, we roll the underlying 
time interval 7 days further, as this is half of the estimated 
maximum incubation time.[24]

RESULTS AND DISCUSSION

Early Detection of Regional COVID-19 Cycles
Figure 1 shows the development of the daily number of new 
COVID-19 infections and test results for the time interval from 
June the 1st to September the 30th around the second cycle in 
the six countries of our study. (We acknowledge that there also 
exists a number of hidden infection cases and our database 
may comprise false positive detected cases.[25,26] Our analysis 
therefore only considers reported new infection cases. In 
addition, we acknowledge, that there are also different regional 
spreading dynamics within each country, for example for the 
second cycle in Germany.[27]

For Australia and the Republic of Korea we directly see that the 
proposed test strategy has early identified the pandemic status 
changes and the beginning of the second pandemic cycles. 
For the U.K., Austria, Germany, and Italy the emergence 
of the second cycles has meanwhile deeply confirmed.[28-31] 
The country-specific test results here strongly support the 
hypothesis that the proposed test and test strategy have the 
capability of identifying pandemic status changes very early.

For the U.K. we see that in a period until mid-July the 
number of daily new infections decreased before moving 
into a phase of stable development. (Our test also identifies a 
decreasing number of daily new infections by the acceptance 
of the null hypothesis. This can be helpful, for example 
for monitoring the effects of taken countermeasures). The 
tested time interval ending mid-August and the acceptances 
of the null for the following time intervals indicate the 
continuous increase in the number of daily new infections. 
The test result from August the 16th thus indicated a status 
change comparatively early and, when combined with the 
later results, also marked the new emerging pandemic cycle 
in the U.K.

The development in Austria shows that a pandemic cycle 
can also emerge step by step following phases of relative 
stability when each new phase exhibits a higher mean of the 
empirical distribution of daily new infections. From a phase 
of a low mean of daily new infections until the beginning 
of July the increase of the number of new infections led to 
a phase of relative stability between July and mid-August. 
A further but shorter stable time interval with an even higher 
mean of daily new infections in the second half of August 
finally led to a continuous growth situation until the end of 
September.

In the beginning of the COVID-19 pandemic, Germany 
had a very similar development as Austria. From mid-July 
on this seems to have changed. After a period with a rather 
constant and low mean of the number of daily new infections 
from June to July, the analyzed data indicates a continuous 
growth of daily new infections, only interrupted by a 1-month 
stable phase between mid-August and mid-September before 
the number of daily new infections starts to rise again. The 
indication of the emerging second cycle in Germany starting 
with test results from July the 26th on is a salient result, since 
until mid-October 2020 there were intensive discussions in 
Germany, whether a second pandemic cycle had started or 
not.[32]

Austria and Germany are both examples for a pandemic 
cycle pattern that can consist of multiple phases of 
stability, which together form an overall emerging cycle. 
Phases of stability in an emerging cycle seem to exhibit 
a higher finite variance around a higher finite mean of 
the number of daily new infections. This is a relevant 
observation when fighting the pandemic as in our cases 
these phases of stability indicate a special pattern of a 
growing development rather than a sustainable overall 
stable situation.
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Figure 1: Development of daily new COVID-19 infections in the United Kingdom, Austria, Germany, Italy, Australia, Republic of Korea
(Contd...)



Treptow: Testing for pandemic status changes

 Available at www.aujst.com 738

Figure 1: (Continued)

One-sided probability values at 5% level of significance, 
critical values according to MacKinnon.[33] Number of 
daily new infections between June the 1st and September 

the 30, 2020. All data were taken from the World Health 
Organization[34] except German data taken from Robert Koch 
Institute.[35]
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The development in Italy shows a very fast increase of the 
number of new infections in the second half of August, whereas 
the beginning of the new cycle has already been indicated by the 
July test result. Between mid-August and mid-September Italy 
has had a phase of stability with a high mean and variance before 
the last test result in September indicates another growth situation. 
Developments in Australia and in the Republic of Korea are two 
examples that show how different the speed of regional pandemic 
developments can be. While the second Australian cycle shows a 
stable phase when it reached its top (between mid-July and mid-
August), albeit with a high variance, the dynamic in the Republic 
of Korea is so fast, that after reaching the top of the second 
pandemic cycle a phase of a decreasing number of new infections 
follows immediately. The fast development in the Republic of 
Korea shows a limitation of our test and test strategy. Since the 
positive (and negative) growth rates are extremely high and we 
technically need a certain number of observations for our test and 
statistical analysis, feasible time intervals, after the peak of the 
second cycle has been reached, comprise a complete cycle, for 
example from August the 10th (or August the 17th) to September 
the 13th (to September the 20th). With tested time intervals that 
comprise a complete pandemic cycle (or a substantial part of it), 
we must admit that the information content derived from these 
tests is rather limited.

Under a very cautious interpretation and acknowledging that 
when back-testing we have information that we would not have 
had in the past, we dare to conclude, that our proposed test and 
testing strategy may have the property to identify pandemic 
status changes comparatively early and with a certain reliability 
based on reported daily new infections. This is especially 
underscored when we compare the test results, where we at first 
identified the start of emerging pandemic cycles with a purely 
visual inspection of the development of the number of daily 
new infections, see for example U.K. (Germany, Italy) for the 
test interval ending August the 16th (July the 26th, August the 
2nd). From the test results of the six countries of our study, we 
can furthermore directly deduce that there are different patterns 
of emerging regional pandemic cycles. Careful analysis of 
identified phases of stability is therefore necessary as these can 

be the contributing blocks of an emerging pandemic cycle (see 
e.g. Austria for the period ending September 6th and Germany 
for the period ending September 20th in [Figure 1]). In the cases 
of the U.K., Austria, Germany, and Italy the identified situation 
of an emerging second pandemic cycle has meanwhile been 
confirmed. (Probability values of 81,04%, 71,22%, 99,47%, and 
99,82% of four tested time intervals ending July 18th, July 25th, 
August 1st, and August 8, 2021 indicated early a status change 
and the beginning of the fourth pandemic cycle in Germany.[36]

Pandemic Status Change Test and Test Strategy
It is generally accepted that to achieve reliable results from 
unit root testing in a statistical sense requires an approach 
that exploits available ex ante information about the real data 
generating process[37] and an explicit testing strategy.[38,39] The 
proposed pandemic status change test, that is based on ADF 
unit root testing, is defined in that sense. For a defined level of 
significance, the null hypothesis of the test equation, a pandemic 
status change, cannot be rejected in case of a stochastic or a 
deterministic trend in the underlying data of the daily number 
of new infections. The test so offers a high sensitivity with 
respect to the early detection of a pandemic status change. 
With the strategy of continuously testing overlapping time 
intervals, we obtain a series of test results that allows a reliable 
analysis of the regional pandemic development with respect 
to the number of new infections.

The assessment, if identified status changes at the time of their 
first emergences either indicate a level change of the mean of the 
following emerging empirical distribution of daily new infections 
or the immediate beginning of a new pandemic cycle, depends 
on the test results of the subsequent pandemic development. The 
defined test strategy under these conditions will for later time 
windows lead to a rejection of the null for level changes (e.g. 
Austria after July the 12th) or to the continuous rejection of the 
null for the beginning of a new emerging cycle (e.g. the U.K. 
from August on). A first non-rejection of the null of a continuous 
testing strategy may lead to the ambiguity, whether we are about 
to identify a level change or an immediate newly beginning 
pandemic cycle. Careful analysis and the results from subsequent 
tests can then help to distinguish between these situations. The 
basic idea of the proposed test is to identify pandemic status 
changes as early as possible from information that is already 
embedded in the actual available data. However, the reliability 
of the results directly depends on the quality of the provided 
data. Obvious lacks in the daily reporting of the number of new 
infections, (e.g. obvious weekend effects in the French data 
reported to the World Health Organization) may introduce some 
kind of (technical) seasonality in the data and ask for special 
attention in econometric modeling. On the other hand, they do not 
level off the overall local development. In addition, deterministic 
and non-stationary seasonality do not pose a serious problem in 
our application of unit root testing since we implicitly account 
for them in our test specification and parameterization.

Figure 2: Daily new COVID-19 infections in Australia from June 
1st to July the 31, 2020
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CONCLUSION

In our top-down approach to test for pandemic status changes, 
we do not ask or try to explain the underlying reasons. Our 
analysis is descriptive in nature. We expect that a combination 
of our test results with epidemiological and virological analysis 
may provide further insights into the nature of status changes 
and patterns in emerging pandemic cycles. The proposed 
pandemic status test should therefore only be understood as a 
contributing element in a broader pandemic analysis.

As usual, the results of our econometric analysis for six 
countries and an analysis of past observations cannot naively be 
taken as generally reliable predictors for future developments. 
The derived test results therefore require a careful and prudent 
analysis and interpretation. In addition, it needs further 
theoretical and empirical study to assure that the proposed 
pandemic status test exhibits all assumed characteristics so 
that it can even more eligibly be applied in the described 
way. This also concerns the power and the size of the test. 
Nevertheless, the results of our study seem to be promising, 
indicating that the achievable information has the potential 
to support practical health and economic policy management 
considerations when fighting the COVID-19 pandemic. This 
is of importance given the lack of knowledge and experience 
concerning the development of the COVID-19 pandemic.
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