
 Available at www.aujst.com 54

An enhanced web security for cloud-based password
management
Ridwan Olayinka Oladipupo, Ajayi Olusola Olajide*

Department of Computer Science, Adekunle Ajasin University, Akungba-Akoko, Ondo, Nigeria

ABSTRACT

Password is a security mechanism for securing application and its contents by preventing unauthorized users’ access, using secure means.
Breaches of access by unauthorized users have, however, become a subject of concern to many web developers and application owners. Cloud-
based password management system represents the storage and access of web passwords through the “Cloud.” The study examines and analyzes
the current password management status of web application (Adekunle Ajasin University, Akungba-Akoko) with a view to detect the flaws/
insecurity in the site. This paper uncovers the vulnerabilities of existing web application and analyzes how they can be exploited by attackers
to crack users’ saved passwords. The study proposes a novel cloud-based password management design to achieve a high level of security
with the desired confidentiality, integrity, and availability properties. The study, which employed cryptographic hash function (Secure Hash
Algorithm-256) and Diffie–Hellman key exchange algorithm, was designed using penetration testing technique and implemented a highly secure
cryptography (i.e., a zero-knowledge protocol) for making the site more tightly secured, thereby ensuring a secure channel through the data flows.

Keywords: Availability, breaches of access, cloud, confidentiality, cryptographic, integrity, password management, password, secure,
security

Submitted: 29-04-2019, Accepted: 16-05-2019, Published: 29-06-2019

INTRODUCTION

Since the internet is open systems and the web applications
are increasingly used to deliver critical services, they become
a valuable target for security attacks. The security of the web
applications become the main concern to many users of the
web applications, especially when the web application is
interactive and requires the exchange of sensitive information
such as financial, health, or credit card numbers. If these web
applications were not secured, then the entire database of
sensitive information is at serious risk. Therefore, there was
great effort in both the research and industry communities to
provide secure communication services to web applications.
A great deal of attention has been given to network-level
security, such as port scanning, and great achievements have
been accomplished at this level as well. However, it was found
that about 75% of attacks were targeted to application level,
such as web servers.[1]

According to Ajayi and Fanala,[2] it was observed that web
application introduced in 1990 was a general, delivery

mechanism. It transformed from a static hypertext document
to a complete dynamic runtime environment for multiparty
and distributed applications. The emerging trend was popular
in peer-to-peer web applications and multiple applications.
However, the transformation of the web application from
the server-centric model creates a significant and numerous
challenges in web applications security.[3]

Password compromise is still the root cause behind many cyber
breaches. In 2014, two of three breaches involved attackers
using stolen or misused credentials.[4] Yet, the majority of
internet users still do not follow secure password management
practices.[5] Password is the most common method for users to
authenticate themselves when entering computer systems or
websites. It acts as the first line of defense against unauthorized
access, and it is, therefore, critical to maintain the effectiveness
of this line of defense by rigorously practicing a good password
management policy.

According to Adams and Sasse[6] study on password habits,
it was found that insecure password practices can, in general,

Address for correspondence: Ajayi Olusola Olajide, Department of Computer Science, Adekunle Ajasin University, Akungba-Akoko,
Ondo State, Nigeria. Tel: +234(70)56433798. E-mail: olusola.ajayi@aaua.edu.ng

Australian Journal of Science and Technology
 ISSN Number (2208-6404)
 Volume 3; Issue 2; June 2019

Original Article

Oladipupo and Ajayi: An enhanced web security for cloud based password management

 Available at www.aujst.com 55

not be caused by user carelessness, but on the inadequacy
of policies under which users have to manage passwords.
However, a cloud-based synchronization across devices and
password managers promise tremendous security and usability
benefits at minimal deployability costs.[7] Secure password
practices result in numerous cryptic passwords which are
very difficult to keep track of. It is impossible for most people
to consistently remember more than just a few of them. Yet,
according to a recent survey conducted by Google, over 50%
of users reported that they rely on memory alone to keep track
of their passwords. The fact that they rely solely on memory is
a clear indication that they are not following secure password
practices because if they can remember all of their passwords,
then they must be creating simple passwords, or reusing
passwords for multiple accounts, or both.[8]

Furthermore, due to more customer data going online by
adapting to online banking or fund transfer practices, user’s
accounts and other information have become vulnerable
to fraud and other attacks. Furthermore, hackers in recent
years are increasingly targeting web applications since most
networks are closely monitored through Intrusion Detection
Systems and firewalls. Therefore, the web application layer
needs to be secured from unauthorized users by building across
the software development lifecycle security mechanism.[9] This
ensures that it is not an afterthought issue, only considered in
the end[10] as in many software development processes, where
as a result, attackers continue to explore areas of vulnerability
to undermine the integrity of applications. In recognition of this
problem, developers have to incorporate security during the
development to produce vulnerability-free software systems
since the existence of flaws at the design or coding phase of
the development lifecycle can open web applications to a wide
range of attacks.[11]

Hence, one of the important sectors that exploit the web
technology in their services is the education sector such as
research institutions, universities, and training organizations.
Web application and websites are heavily used in education
for information dissemination, lectures, assignments,
collaborations, discussions, conferences, grading, training,
distance learning, research activities, e-voting, and many
others. Web applications in education sector usually hold
sensitive information, such as faculty member researches,
student results, and staffs account. These data or information
need to be secured from non-authorized users. Unfortunately,
the sense and awareness of securing these data have not
received great attention from academicians. While securing
enterprise data are usually focused on financial, military, or
demographic organizations, it is often neglected in education
organizations.

The intentions behind this research work are in two-fold: First,
to observe and analyze the current password management status

of web application (Adekunle Ajasin University, Akungba-
Akoko [AAUA] AVERS) with a view to detect the flaws/
insecurity in the site and second, to design a highly secure
cryptography (i.e., a zero-knowledge protocol) for making
the site/service more tightly secured and to ensure a secure
channel through with the data flows.

According to Scott and Kent,[12] cloud-based password
managers have become popular and ease the burdens of
password management on users that are willing to trust a third
party to store their passwords. Li et al.[13] and Silver et al.[14] in
their recent security evaluations of password managers revealed
security flaws in popular password managers that can result in
the compromise of user’s passwords. Password managers are
designed to ease the burden of password management.

Password management applications are recommended by the
vast majority of IT security experts. Yet, the vast majority
of non-experts do not use them to manage their passwords.
A recent survey of both security experts and non-expert
web users conducted by Google revealed some interesting
differences between the two groups. According to the Google
survey, 73% of security experts use a password manager
themselves, compared to only 24% of non-experts. Both
experts and non-experts agree that it is very important to
follow secure password practices, but they disagree on the
benefits of using a password management application for this
purpose. About 48% of the security experts polled ranked the
use of password management applications as one of the top
things people can do to stay safe on the internet, while only 3%
of non-experts thought that this was an important practice to
follow. It seems that the average web user is either unaware of
the benefits gained using a password management application
or that they do not trust them to keep their passwords secure.[8]

Text-based passwords still occupy the dominant position in
online user authentication.[7,15] They protect online accounts
with valuable assets and thus have been continuously
targeted by various cracking and harvesting attacks. Password
security heavily depends on creating strong passwords and
protecting them from being stolen. However, researchers
have demonstrated that strong passwords that are sufficiently
long, random, and hard to crack by attackers are often difficult
to remember by users.[16] Meanwhile, no matter how strong
they are, online passwords are also vulnerable to harvesting
attacks such as phishing.[17-19] These hard problems have
been further aggravated by the fact that web users have more
online accounts than before and are forced to create and
remember more and more usernames and passwords probably
using insecure practices such as sharing passwords across
websites.[20] Password manager, particularly browser-based
password manager (BPM), is one of the most popular
approaches that can potentially best address the online user
authentication and password management problems. Browser

Oladipupo and Ajayi: An enhanced web security for cloud based password management

 Available at www.aujst.com 56

integration enables BPMs to easily save users’ login information
including usernames and passwords into a database, and later
automatically fill the login forms on behalf of users. Therefore,
users do not need to remember a large number of strong
passwords; meanwhile, BPMs will only fill the passwords on
the login forms of the corresponding websites and thus can
potentially protect against phishing attacks. Fortunately, all the
five most popular browsers Internet Explorer, Firefox, Google
Chrome, Safari, and Opera have provided password managers
as a useful built-in feature. Unfortunately, the designs of all
those BPMs have severe security vulnerabilities. In essence,
our key observation is that the encrypted passwords stored by
those BPMs are very weakly protected – they can be trivially
decrypted by attackers for logging into victim’s accounts
on the corresponding websites. We have developed tools to
demonstrate that once stolen, the encrypted website login
information saved by the five browsers (without using a master
password in Firefox and Opera) can all be easily decrypted by
attackers. When a master password is used in Firefox or Opera,
even though decrypting a user’s login information becomes
harder, brute force attacks and phishing attacks against the
master password are still quite possible.

This paper uncovers the vulnerabilities of existing web
application and analyzes how they can be exploited by attackers
to crack users’ saved passwords. Moreover, we propose a novel
cloud-based password management design to achieve a high
level of security with the desired confidentiality, integrity, and
availability properties. Cloud-based password management is
cloud-based storage in the sense that the protected data will
be completely stored in the cloud – nothing needs to be stored
on a user’s computer. This study intends to move the storage
into the cloud for two main reasons. One is that in the long
run, trustworthy storage services in the cloud[21] can better
protect a regular user’s data than a local computer. The other
is that the stored data can be easily accessible to the user across
different operating system accounts and different computers. It
is believed that cloud-based management is a rational design
that can also be integrated into other popular browsers to make
the online experience of web users more secure, convenient,
and enjoyable.

Statement of Problem
Although several researches have been carried out in the
area of web security among which include[22] – Surviving
the web: A journey into web session security;[12] End-to-end
passwords;[23] and All your browser-saved passwords could
belong to us: A security analysis and a cloud-based new
design, this work observes and analyzes the current password
management status of web application (AAUA AVERS) with
a view to detecting the flaws/insecurities in the site. Recent
studies have explored password managers’ usability. Chiasson
et al.[24] conducted a 20.6-person user study comparing two
password managers: PwdHash and Password Multiplier.

Ambarish et al.[25] conducted a usability study of three
password managers. The users in their study preferred local-
based password managers to a cloud-based manager. They
credited the finding to the reluctance of users to trust an online
password manager. This study in its own view is set to design
a highly secure cryptography (i.e., a zero-knowledge protocol)
for making the site/service more tightly secured.

Related Works
In 1999, Provos and Mazieres[26] proposed ways of building
systems in which password security keeps up with hardware
speeds. They formalized the properties desirable in a good
password system and showed that the computational cost of any
secure password scheme must increase as hardware improves.
They presented two algorithms with adaptable cost Eksblowfish,
a block cipher with a purposefully expensive key schedule and
BCrypt, a related hash function. The key setup begins with a
modified form of the standard Blowfish key setup, in which
both the salt and password are used to set all subkeys. There
are a number of rounds in which the standard Blowfish keying
algorithm is applied, using alternately the salt and the password
as the key, each round starting with the subkeys state from the
previous round. Cryptotheoretically, this is no stronger than the
standard Blowfish key schedule, but the number of rekeying
rounds is configurable; this process can, therefore, be made
arbitrarily slow, which helps deter brute-force attacks on the hash
or salt. Failing a major breakthrough in complexity theory, these
algorithms should allow password-based systems to adapt to
hardware improvements and remain secure well into the future.

In 2009, Colin[27] introduced SCrypt which is an improvement
on BCrypt. As noted, the main threat against BCrypt in 1999
was application-specific integrated circuit (ASICs) with low
gate counts, but today, the threat is field-programmable gate
array (FPGAs) and BCrypt was not designed to protect against
that threat. In the above cases, a function is being provided that
developers can put passwords into to get an encoded result.
The solutions are improvements on Morris and Thompson’s
work for protecting passwords in UNIX systems.

Thulasimani and Madheswaran[28] proposed hash functions that
are the most widespread among all cryptographic primitives
and are currently used in multiple cryptographic schemes
and in security protocols. The basic design of Secure Hash
Algorithm (SHA)-192 is to have the output length of 192.
The SHA-192 has been designed to satisfy the different levels
of enhanced security and to resist the advanced SHA attacks.
The security analysis of the SHA-192 is compared to the old
one given by National Institute of Standards and Technology
and gives more security. The SHA-192 can be used in many
applications such as public key cryptosystem, digital sign
encryption, message authentication code, random generator,
and in security architecture of upcoming wireless devices such
as software-defined radio.

Oladipupo and Ajayi: An enhanced web security for cloud based password management

 Available at www.aujst.com 57

In Richa et al.,[29] the authors proposed a new hash function
algorithm that includes 64 bits key as an ingredient to the
function. It produced 128 bits digest with a secure and simple
technique as compared to many other existing techniques. The
author submitted that the use of key adds the source integration
facility while creating digest just for integrity purpose.

Selva and Anuja[30] in their paper secured password management
technique using one-time protocol in smartphone. They
proposed a user authentication technique that can be used to
prevent from password stealing and password reuse attacks
by installing the applications on the Android smartphone.
Deepika et al. proposed user security in cloud using password
authentication. The study implements password authentication
technique to enhance the security of cloud by creating an
algorithm based on the selection of username and generates a
password to strengthen the security in cloud.

In Disha,[31] the paper justified MD algorithm as one that
enhances security of data by generating digital signature. He
proposed an algorithm that has five phases: Key generation,
digital signing, encryption, decryption, and signature. The
evaluation of the result shows that the algorithm would be a
high security algorithm for data transfer.

The paper, Sahni[32] discussed common cryptographic hashing
algorithms and compared their relative performance. Majoring
on MD5 and SHA-1, the evaluation result shows MD5
produced a hash value of 128 bits, whereas SHA-1 produced
160 bits. While submitting that SHA-1 proved more secure
than MD5, he, however, pointed out that in terms of ease of
implementation, MD5 is more suitable.

In Sriramya and Karthika,[33] the study focuses on providing
security to user’s data using salted password hashing technique.
To ensure this and enforce a tight security procedure, BCrypt
algorithm was implemented to secure user’s privacy when
shopping online. BCrypt is currently the secure standard for
password hashing. It is derived from the Blowfish block cipher
which, to generate the hash, uses lookup tables which are
initiated in memory. This means a certain amount of memory
space needs to be used before a hash can be generated. This can
be done on central processing unit, but when using the power
of graphics processing unit (GPU), it will become a lot more
cumbersome due to memory restrictions. BCrypt has been
around for 14 years, based on a cipher which has been around
for over 20 years. It has been well vetted and tested and hence
considered the standard for password hashing. When BCrypt
was originally developed, its main threat was custom ASICs
specifically built to attack hash functions. These days those
ASICs would be GPUs (password brute forcing can actually
still run on GPU, but not in full parallelism) which are cheap
to purchase and are ideal for multithreaded processes such
as password brute forcing. FPGAs are similar to GPUs, but

the memory management is very different. On these chips,
brute-forcing BCrypt can be done more efficiently than on
GPUs, but if you have a long enough password, it will still be
unfeasible. The iteration count is a power of two, which is an
input to the algorithm.

Tivkaa et al.[34] researched an enhanced Password-Username
Authentication System Using Cryptographic Hashing and
Recognition-based Graphical password. The research work
presented an authentication solution that addresses the issue
of SQL injection (SQLI) and online password guessing attacks
on login form as implemented in generic web applications.
The solution combined the use of plain text credentials that
are cryptographically hashed at runtime with recognition-based
graphical login credentials. The goal is to always guarantee
access to a user account even when such account is under
attack while at the same time ensuring convenient and secure
login experience by legitimate users. The goal was achieved
by blocking the Internet Protocol addresses from which there
are unsuccessful login attempts. However, security test shows
that the solution is not vulnerable to SQLI and online password
guessing attacks. In other to mitigate online guessing and
SQLI attack on authentication functionality, the researcher
combines a technique which combines the use of cryptographic
hashing algorithm, recognition-based graphical password, and
parameterized queries.

In Ajayi and Fanala,[2] the study carried out an empirical
evaluation of data hashing algorithms for password checks in
PHP Web Applications taking SHA1, MD5, BCrypt, SCrypt,
Salt, and SHA256 into consideration and implementing a
comparative analysis of the specified algorithms to prove
their vulnerabilities and strengths. The research work helps
to evaluate the different hashing algorithms. MD5, SHA1,
and SHA256 appear so weak, MD5 allows attackers to create
multiple, differing input sources that, when this algorithm is
used, result in the same output fingerprint. On the other hand,
SHA1-2 levels are vulnerable to length-extension and partial-
message collision attacks. The salt and crypt hashing algorithm
appear strong, they protect against rainbow table attacks and
also help to deter brute-force attacks on the hash.

Rituraj et al.[35] researched An Effectual Hybrid Approach
Using Data Encryption Standard (DES) and SHA for image
steganography. The paper presents and discusses Least
Significant Bit (LSB)-based image steganography with DES
SHA algorithm so as to provide an extra layer of security.
The proposed approach deals with the hybrid approach of
encryption and cryptography using DES which is popularly
known as Data Encryption Scheme and also the SHA-512
algorithm which will be the robust approach to perform the
steganography process. For evaluating purpose of the proposed
hybrid approach, statistical technique mean square error and
peak signal-to-noise ratio was used.

Oladipupo and Ajayi: An enhanced web security for cloud based password management

 Available at www.aujst.com 58

Sanjeev et al.[36] presented a secure transfer of university
question paper using image steganography. This research
discusses on how the security of question paper delivery can
be enhanced by image steganography. There are a lot of cases
of university question paper leakage. Due to this, university has
undergone various problems to tackle this event. The current
system that the university uses for question paper transfer is
based on face detection which is not very reliable and can be
exploited. Moreover, this transfer process is not very secured
and is a complex process. However, the system was developed
to enhance the security of the transfer process. The system
adopts LSB embedding which provides the 1st layer of security,
and the embedded data are encrypted by DES algorithm which
again a layer of encryption to the embedded data. Audio and
video steganography was equally used to make the process of
transfer more challenging to crack.

MATERIALS AND METHODS

Methodology
This study adopts the use of cryptographic hash function
(SHA-256) and Diffie–Hellman (D-H) key exchange
algorithm. Security of password can be done by a technique
called cryptography. Cryptography is the science of using
mathematics to encrypt and decrypt data. It enables you to
store sensitive information or transmit it across insecure
communication channels so that it cannot be read by anyone
except the intended recipient. Cryptic writing is a method
to protect the data from a third party to keep the data in a
confidential manner; the technique cryptography is very
essential in securing the content over a network. However, there
are possibilities for an attack in the communication channel
by the attacker who will trace out the key that is used for the
encryption as well as the decryption. Hence, a strict method
or algorithm known as D-H key exchange algorithm will be
used for the secure exchanging of the key.

In the pursuit of a successful implementation of this work,
the following procedure shall be followed, as illustrated in
Figure 1:
i. Application review: This step performs a penetration testing

on the already existing web applications (AAUA AVERS),
to deduce the vulnerabilities and flaws/insecurities on the
site. Furthermore, the weakness of the type of password
management system as well as the type of storage
management in place will be checked. However, this will
be achieved using a penetration testing tool on Kali Linux.

ii. Application prototype: This step develops a prototype
application with same functionality as the existing
application. In other to achieve the application prototype
development, Html, CSS, JavaScript, and Bootstrap
should be used for the frontend development while
Python/Django and PostgreSQL will be used for the
backend development.

iii. Cryptosystem implementation: This step embeds a zero-
knowledge cryptography in the prototype application.
SHA-256 will be used to secure user’s access information,
while D-H key exchange algorithm will be used for
securing the data/channel flow.

iv. Cloud storage: The application should be deployed in
the cloud storage. This will be achieved by considering
deployment in Amazon (cloud storage provider).

Model
A model can come in many shapes, sizes, and styles. It is
important to emphasize that a model is not the real world but
merely a human construct to help us better understand real-
world systems. The model illustrated in Figure 2 is deployed
as a guide to successful implementation of this research work.

The model consists of the following components,
i. Flaw detection
ii. Cryptographic hash function (SHA 256)
iii. D-H key exchange algorithm

Flaw Detection
Penetration testing is an investigation conducted to provide
stakeholders with information about the quality of the
application under test. Penetration testing can also provide
an objective, independent view of the software to allow the
business to appreciate and understand the risks of software
implementation. Test techniques include, but are not limited
to, the process of executing a program or application with
the intent of finding flaws (errors or other defects). In other
to detect the flaws in the existing application, an inbuilt pen
testing tools on Kali Linux will be used.

Cryptographic Hash Function (SHA 256)
Cryptographic hash functions, also called message digests
and one-way encryption, are algorithms that, in some sense,
use no key. It is an algorithm that can be run on data such as
an individual file or a password to produce a value called a
checksum. The main use of a cryptographic hash function
is to verify the authenticity of a piece of data. Two files can
be assumed to be identical only if the checksums generated

Figure 1: Diagram showing the research methodology

Oladipupo and Ajayi: An enhanced web security for cloud based password management

 Available at www.aujst.com 59

from each file, using the same cryptographic hash function,
are identical. Some of the commonly used cryptographic hash
functions include MD5, SHA-1, and SHA-2.

An SHA is considered to be cryptographically secure. The
original data, once hashed by an SHA, typically cannot
be reconstructed with a feasible amount of computing
power.[37] SHA-256 generates an almost-unique 256-bit
(32-byte) signature for a text. See below for the source
code. Figure 3 shows the block diagram of Hash function.
A hash function H accepts a variable-length block of data
M as input and produces a fixed-size hash value h = H(M).
In general terms, the principal object of a hash function is
data integrity. A change to any bit or bits in results, with
high probability, in a change to the hash code. Virtually,
all cryptographic hash functions involve the iterative use
of a compression function. The compression function
used in SHAs falls into one of two categories: A function
specifically designed for the hash function or an algorithm
based on a symmetric block cipher. SHA and Whirlpool are
examples of these two approaches, respectively. The hash
algorithm involves repeated use of a compression function,
f, that takes two inputs (an – bit input from the previous
step, called the chaining variable and a – bit block) and
produces an – bit output.

Secure Hash Algorithm (SHA) is a family of cryptographic
hash functions. In pursuit of the study, SHA-256 will be used

to secure user’s access information. However, comparison
of SHA Parameters is shown in the Table 1. All sizes are
measured in bits.

D-H Key Exchange Algorithm
A simple public-key algorithm is D-H key exchange.
This protocol enables two users to establish a secret key
using a public-key scheme based on discrete logarithms.
The protocol is secure only if the authenticity of the two
participants can be established. D-H is used for secret-key
key exchange only and not for authentication or digital
signatures.

Algorithm is as follows:
i. Select two global public elements: A prime number p and

an integer α that is a primitive root of p.

Figure 2: Architectural model for the study

Figure 3: Block diagram of hash function

Table 1: Comparison of SHA parameters
Algorithm Message

digest size
Message
Size

Block
size

Word
size

Number
of step

SHA-1 160 <264 512 32 80
SHA-224 224 <264 512 32 64
SHA-256 256 <264 512 32 64
SHA-384 384 <212k 1024 64 80
SHA-512 512 <212k 1024 64 80
SHA: Secure hash algorithm

Oladipupo and Ajayi: An enhanced web security for cloud based password management

 Available at www.aujst.com 60

ii. Sender key generation: Sender selects a random integer
XA < p which is private and computes YA = α XA mod p,
which is public.

iii. Receiver key generation: Receiver selects a random integer
XB < p which is private and computes YB = α XB mod p,
which is public.

iv. Sender calculates secret key: K = (YB) XA mod p
v. Receiver calculates secret key which is identical to sender

secret key. K = (YA) XB mod p.

Mathematical Model
1. The first i actions or test cases detect Mi defects and the

testing process during the time interval (0, t) detects M (t)
defects; that is,

0
1

 , 0;
i

i k
k

M Z with M
=

= =∑

()
()

() 0
1

 , 0 0, 0.
H t

k
k

M t Z with M Z
=

= = =∑
2. Upon a failure being revealed, the execution of the current test

case terminates; at most one, failure causing defect is removed
immediately from the software under test, and a new defect
may or may be introduced; more specifically, it holds

1,

1

1

 1

 1,

,

k

k k

k

N with probability p q

N N with probability p

N with probability q

−

−

−

− −
= +

0 ≤ p, q ≤ 1, 0 ≤ p + q ≤ 1.

However, Nk denotes the number of defects remaining in the
software after the kth test

RESULTS AND DISCUSSION

Experimental Evaluation
The experimental work considers the password check of
AAUA AVERS, testing with SHA256 and D-H key exchange
algorithm.

Procedure for Evaluation
1. The password was encrypted with PBKDF2 and SHA256

hash
2. The hashed password was, however, secured over an

unsecured communication channel with D-H key exchange
algorithm.

Properties of the Component Evaluated
A cryptographic hash (sometimes called “digest”) is a kind
of “signature” for a text or a data file. SHA-256 generates
an almost-unique 256-bit (32-byte) signature for a text. In
particular, cryptographic hash functions exhibit three properties
1. They are “collision free.” In simple words, no two input

hashes should map to the same output hash
2. They can be hidden. In simple words, it should be

difficult to guess the input value for a hash function
from its output

3. They should be puzzle-friendly. That is to say, it should be
difficult to select an input that provides a predefined output.
Thus, the input should be selected from a distribution that
is as wide as possible

Furthermore, the D-H key exchange is a secure method for
exchanging cryptographic keys. This method allows two parties
which have no prior knowledge of each other to establish
a shared, secret key, even over an insecure channel. The
concept uses multiplicative group of integers modulo, which
without knowledge of the private keys of any of the parties,
would present a mathematically overwhelming task to a code
breaker. The general idea of the D-H key exchange involves
two parties exchanging numbers and doing simple calculations
to get a common number which serves as a secret key. Both
parties may not know beforehand what the final secret number
is, but after some calculations, both are left with a value that
only they know about which they can use for various purposes
like identification and as a secret key for other cryptographic
methods.

Evaluation Result/Output
Figure 4 shows that adding Diffie Hellman Key exchange
algorithm to a hashed password (with SHA 256) proves a more
secured cryptography for preserving and protecting password
in the cloud storage.

Figure 4: Evaluation output

Oladipupo and Ajayi: An enhanced web security for cloud based password management

 Available at www.aujst.com 61

CONCLUSION

Password management is a set of principles and best practices
to be followed by users while storing and managing passwords
in an efficient manner to secure passwords as much as they can
to prevent unauthorized access. Finding shows the reluctance
of users in trusting an online password manager. In essence,
password managers are a great double-whammy: not only do
they drastically increase your security, but they also simplify
your life.

This study in its own view, is set to design a highly secure
cryptography (i.e. a zero-knowledge protocol) for making the
site /service more tightly secured. Consequently, this work
presented an enhanced web security for cloud-based password
management using SHA-256 and Diffie Hellman key exchange
algorithm. The methodology and model of the system were
expatiated upon. The system structure and the visible activities
that take place within the system were also presented using
appropriate UML design. For the implementation, OWASP
ZAP, a penetration tool on Kali LinuX was used to penetrate
the existing application, Html, CSS and Bootstrap was used
for the Frontend Development of the prototype application,
Python/Django was used for the interaction with the server,
and PostgreSQL for the database.

The result of the evaluation carried out shows that Django
endeavors to provide a secure and flexible set of tools for
managing user passwords.

Future Direction
The designed architecture presented in this study is simplified
such that it can easily be modified to enable adaptation
and application to other research domains such as mobile
application and desktop application.

REFERENCES

1. Livshits B, Lam M. Finding Security Vulnerabilities in Java
Applications with Static Analysis, Proceedings of the 14th
Conference on USENIX Security Symposium, 14, 2005.
Available from: http://www.portal.acm.org. [Last accessed on
2018 Jun 15].

2. Ajayi OO, Fanala TF. Empirical evaluation of data hashing
algorithms for password checks in PHP webapps using salt and
pepper. Comput Inf Syst Dev Inf Allied Res J 2017;8:21-8.

3. Alanazi F, Sarrab M. The history of web application security
risks. Int J Comput Sci Inf Secur 2011;9:40-7.

4. Higgins K. Stolen Passwords Used In Most Data Breaches; 2014.
from http://www.darkreading.com/stolen-passwords-used-in-most-
data-breaches/d/d-id/1204615. [Last accessed on 2018 Jun 15].

5. Rubenking N. Survey: Hardly Anybody Uses a Password
Manager; 2015. Available from: http://www.pcmag.com/
article2/0,2817,2407168,00.asp. [Last accessed on 2018 Jun 15].

6. Adams A, Sasse MA. Users are not the enemy. Commun ACM

1999;42:40-6.
7. Bonneau J, Herley C, Oorschot PC, Stajano F. The quest to

replace passwords: A Framework for Comparative Evaluation
of Web Authentication schemes. In Proceedings Of IEEE Symp.
On Security and Privacy; 2012.

8. Ion L, Reeder R, Consolvo S. No one can hack my mind:
Comparing Expert and Non-Expert Security Practices;
2015. Available from: https://www.usenix.org/system/files/
conference/soups2015/soups15- paper-ion.pdf. [Last accessed
on 2015 Dec 13].

9. Ge X, Paige RF, Polack FA, Chivers H, Brooke PJ. Agile
Development of Secure Web Applications. Proceedings of the
6th International Conference on Web Engineering. Palo Alto:
ICWE; 2006. p. 305-12.

10. Norwawi NM, Selamat MH. Secure e-commerce web
development framework. Inf Technol J 2011;10:769-78.

11. McGraw G, Viega J. Building Secure Software. In RTO/NATO
Real-Time Intrusion Detection Symp; 2002.

12. Scott R, Kent S. In Proceedings of New Security Paradigm
Workshop’17, Islamorada, Florida, USA: 2017.

13. Li Z, He W, Akhawe D, Song D. The Emperor’s New Password
Manager: Security Analysis of Web-based Password Managers.
In: USENIX Security Symposium. Berkeley: USENIX; 2014.
p. 465-79. Available from: https://www.usenix.org/system/files/
conference/usenixsecurity14/sec14-paper-li-zhiwei.pdf. [Last
accessed on 2018 Jun 15].

14. Silver D, Jana S, Boneh D, Chen E, Jackson C. Password
Managers: Attacks and Defenses, (Usenix Security) 2014.
Available from: https://www.crypto.stanford.edu/dabo/pubs/
abstracts/pwdmgrBrowser.html. [Last accessed on 2018 Jun 20].

15. Herley C, Van Oorschot PC. A research agenda acknowledging
the persistence of passwords. IEEE Secur Priv 2012;10:28-36.

16. Komanduri S, Shay R, Kelley PG, Mazurek ML, Bauer L,
Christin N, et al. Of Passwords and People: Measuring the Effect
of Password-Composition Policies. In Proceedings of CHI; 2011.

17. Jakobsson M, Myers S. Phishing and Countermeasures:
Understanding the Increasing Problem of Electronic Identity
Theft. New York, NY, USA: Wiley-Interscience; 2006.

18. Rachna D, Tygar JD, Marti H. Why Phishing Works. In
Proceedings of CHI; 2006.

19. Yue C. Preventing the Revealing of Online Passwords to
Inappropriate Websites with Login Inspector. In Proceedings of
USENIX LISA; 2012.

20. Stone-Gross B, Cova M, Cavallaro L, Gilbert B, Szydlowski M,
Kemmerer RA, et al. Your Botnet is my Botnet: Analysis of a
Botnet Takeover. In: Proceedings of Conference on Computer
and Communications; 2009.

21. Popa RA, Lorch J, Molnar D, Wang HJ, Zhuang L. Enabling
Security in Cloud Storage SLAs with Cloud Proof. In
Proceedings of USENIX ATC; 2011.

22. Stefano C, Riccardo F, Marco S, Mauro T. Surviving the
web: A journey into web session security. ACM Comput Surv
2017;5:1-34.

23. Rui Z, Chuan Y. In CODASPY’13, Proceedings of the third ACM
Conference on Data and Application Security and Privacy. San
Antonio, Texas, USA: 2013.

24. Chiasson S, Van Oorschot PC, Biddle R. A Usability Study and
Critique of Two Password Managers. In 15th USENIX Security
Symposium. Vancouver, Canada: 2006. p. 1-16.

Oladipupo and Ajayi: An enhanced web security for cloud based password management

 Available at www.aujst.com 62

25. Ambarish K, Nitesh S, Nicolas C. A comparative usability
evaluation of traditional password managers. In: International
Conference on Information Security and Cryptology. Heidelberg:
Springer; 2010. p. 233-51.

26. Provos N, Mazieres, D. A Future-Adaptable Password Scheme.
Proceedings of the FREENIX Track: 1999 USENIX Annual
Technical Conference, Monterey, California: 1999.

27. Colin P. Stronger Key Derivation Via Sequential Memory-Hard
Functions Conference; 2009.

28. Thulasimani L, Madheswaran M. A novel secure hash algorithm
for public key-digital signature schemes. Int Arab J Inf Technol
2012;9:262-7.

29. Richa P, Upenda M, Abhay B. Design and analysis of a new hash
algorithm with key integration. Int J Comput Appl 2013;81:33-8.

30. Selva R, Anuja P. Secured password management technique
using One-Time-Protocol (OTP) in smartphone. Int J Comput
Sci Mob Comput 2014;3:976-81.

31. Disha S. Digital security using cryptographic message
digest algorithm. Int J Acad Res Comput Sci Manage Stud
2015;3:215-9.

32. Sahni N. A review on cryptographic hashing algorithms for
message authentication. Int J Comput Appl 2015;120:29-32.

33. Sriramya P, Karthika RA. Providing password security by salted
password hashing using B crypt algorithm. ARPN J Eng Appl
Sci 2015;10:5551-6.

34. Tivkaa M, Choji D, Agaji I, Atsaam D. An enhanced password-
username authentication system using cryptographic hashing
and recognition based graphical password. IOSR J Comput Eng
2016;18:54-8. Available from: http://www.iosrjournals.org. [Last
accessed on 2018 Jul 10].

35. Rituraj G, Rekha V, Amanpreet K. An effectual hybrid approach
using data encryption standard (DES) and secured hash algorithm
(SHA) for image steganography. Int J Recent Innov Trends
Comput Commun 2018;6:44-53.

36. Sanjeev B, Sai K, Ajay C, Aditya C. Secure transfer of university
question paper using image steganography. IOSR J Eng
2018;6:89-92.

37. Madhuravani B, Murthy DS. Cryptographic hash functions: SHA
family. Int J Innov Technol Explor Eng 2013;2:326-9.

This work is licensed under a Creative Commons Attribution Non-Commercial 4.0
International License.

