
	 Available at www.aujst.com 68

Evaluating software components reusability using
genetic-fuzzy soft computing approach
O. Ajayi Olusola*

Department of Computer Science, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria

ABSTRACT

The quest to develop software of great quality with timely delivery and tested components gave birth to reuse. Component reusability entails the
use (reuse) of existing artifacts to improve the quality and functionalities of software. Many approaches have been used by different researchers
and applied to different metrics to assess software component reusability level. In addition to the common quality factors used by many authors,
such as customizability, interface complexity, portability, and understandability, this study introduces and justifies stability, in the context of
volatility, as a factor that determines the reusability of software components. Sixty-nine software components were collected from the third-party
software vendors, and data extracted from their features were used to compute the metric values of the five selected quality factors. Genetic-fuzzy
system (GFS) was used to predict the level of the components’ reusability. The GFS was implemented using MATLAB. The performance of the
GFS was compared with that of adaptive neuro-fuzzy inference system (ANFIS) approach using their corresponding average root-mean-square
error (RMSE), to ascertain the level of accuracy of the prediction. The results of the findings showed that GFS with an RMSE of 0.0019 provides
better reusability prediction accuracy compare to ANFIS with an RMSE of 0.1480. The experiment conducted also proved Java components to be
more reusable than the other two components used in the study. This work was able to establish a GFS for the evaluation of software component
reusability, with the results proving the new system a better predictor than the most commonly used system (ANFIS).

Keywords: Adaptive neuro-fuzzy, agile development, genetic algorithm, genetic fuzzy, reusability, soft computing, software component

Submitted: 02-05-2019, Accepted: 23-05-2019, Published: 29-06-2019

BACKGROUND TO THE STUDY

Washizaki et al.[1] defined a software component as a unit of
composition with contractually specified interface and explicit
context dependencies only. He said a software component can
be deployed independently and is subjected to composition by
third party. A component can be a coherent package of software
that can be independently developed and delivered as a unit and
that offers interfaces by which it can be connected unchanged
with other components to compose a larger system.[2] A
software component is a reusable piece of code or software in
binary form, which can be plugged into components from other
vendors with relatively little efforts. They are black box entities
that encapsulate services behind well-defined interfaces, which
tend to be very restricted in nature, reflecting a particular model
of plug compatibility supported by a component framework,
rather than being very rich and reflecting real-world entities
of the application domain.[3]

Component-based software development (CBSD) is a
development approach in which systems are built from well-
defined, independently produced pieces by combining the
pieces with self-made components.[4] CBSD is a paradigm
that aims at constructing and designing systems using a
predefined set of software components explicitly created
for reuse  [Figure 1]. Component-based systems achieve
flexibility by clearly separating the stable parts of the system
(that is, the components) from the specification of their
composition.[3]

Reusability is the degree to which a software component can
be reused.[1,5] This consequently leads to reduced software
development cost and less development time as it enables
less writing but more of assembly. Reusability plays an
important role in CBSD and also acts as the basic criterion
for evaluating component [Figure 2]. Kumar et al.[6] asserted
that reusability of a component is an important aspect,

Address for correspondence: O. Ajayi Olusola, Department of Computer Science, Adekunle Ajasin University, Akungba-Akoko, Ondo
State, Nigeria. E-mail: olusola.ajayi@aaua.edu.ng

Australian Journal of Science and Technology
		 ISSN Number (2208-6404)
		 Volume 3; Issue 2; June 2019

Original Article

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 69

which gives the assessment to reuse the existing developed
component, thereby reducing the risk, cost, and time of
software development. If a component is not reusable, then
the whole concept of CBSD fails.[7] Reusability is one of
the quality attributes of CBSD. It can measure the degree
of features/components that are reused in building similar
or different new software with minimal change.[8] To realize
the reuse of components effectively, reusability estimation
has to be carried out. For systematic reuse process, the use
of metrics is very germane. Without metrics, evaluating the
quality and qualification of the selected components for
reuse becomes an uphill task.[8] Goel and Sharma[9] defined
reusability as the quality of any software component to be
used again with slight or no modification. Software reuse
is the process of creating software systems from existing
software assets rather than building them from scratch.
Reusability was also viewed as the quality factor of software
that qualifies it to be used again in another application, be it
partially modified or completely modified. In other words,
software reusability is a measure of the ease with which
previously acquired concepts and objects can be used in new
contexts. Kumar et al.[10] seen reusability of a component as
an important aspect, which gives the assessment to reuse the
existing developed component. Singh and Tomar[8] viewed
reusability as a physical replaceable part of a system that
adds functionality to the system, through the realization of
a set of interfaces. The components having well-defined

interfaces can be considered good for reuse. The interfaces
have strong significance in context of reusability of
components Figure 3.

Metrics, however, play an indispensable role in the successful
evaluation of software component reusability. According to
Washizaki et al.[1], it is necessary to measure reusability of
software components to realize the effective reuse of such
components. According to the author, metrics are used to
determine quality factors that affect reusability. A component
alone has certain characteristics that tend to affect its
reusability. Quality factors are chosen to provide an analysis of
the reusability of a component. The choice of factors affecting
reusability is considered based on activities carried out while
reusing the components.

Unl ike in the past , where researchers employed
statistical methods of predicting reusability[1,11], recent
interdisciplinary techniques such as fuzzy logic, artificial
neural network (ANN), and neuro-fuzzy have taken the
lead due to their power of predictability.[6,9,12,13] This
work investigates the works of Kumar et al. Sharma et
al. and Sagar et al.[6,12,13] and Goel and Sharma,[9] who all
adopted soft computing approach to predict reusability of
software component, but with varying degree of accuracy.
The problem of applying a method that yields the best
accuracy level and the need to establish stability (in the

Figure 1: Schematic view of component-based software development Approach (Kaur and Singh, 2013)

Figure 2: Component reusability tree – based on the study’s identified metrics, where: COCU: Component customizability, COIC:
Component interface complexity, CORE: Completeness of component return, COUS: Component understandability, COST: Component

stability

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 70

context of volatility) as a factor for determining component
reusability motivated this study to lend a voice to the
domain of component reusability. This research work
presents a genetic-fuzzy system (GFS) with stability in
the context of volatility. The result of the work will be
compared with the result obtained using adaptive neuro-
FIS (ANFIS) method since researches have shown that
ANFIS predicts more accurately than ANN and FIS.[6,9]

RELATED WORK

Researchers have adopted the use of statistical approaches like
correlation analysis, while some made use of soft computing
techniques such as ANN and fuzzy logic to evaluate component
reusability.

Washizaki et al.[1] applied statistical method to component
reusability assessment issue. Metric suites for measuring
reusability of software components were developed. In
implementing the work, component overall reusability
model was developed to assess and evaluate Java web
components. The study proposed three quality factors as
criteria for measuring reusability characteristic, while five
metrics were deployed for the measurement. The factors
are understandability, adaptability, and portability, while
the metrics include existence of metainformation, Rate of
Component Observability (observability) – for measuring
understandability, Rate of Component Customizability
(customizability) – for measuring adaptability, Self-
completeness of Component’s Return Value, and Self-
completeness of Component’s Parameter – for measuring
portability. The result of the analysis conducted using 125
Java web components from www.jars.com shows that the

proposed metrics were suitable. However, the empirical
study was limited to evaluation with Java beans components;
as other component technologies such as. Net and ActiveX
were not explored for further validation.

Rotaru and Dobre [14] addressed reusability from the
perspective of adaptability, composability, and complexity
metrics. The work aimed to cover the main aspects of
reusable software components, which in their opinion are
composability and adaptability. Both factors were evaluated
based on the complexity of the component interface. The
major contribution of the work, which adopted qualitative
approach, was the formulation of metrics and design of a
mathematical model for practical assessment of the specified
software component characteristics. The proposed model
is, however, required to be validated by assessing several
software components based on it.

Sharma et al.[12] contributed largely to software component
reusability works by proposing an ANN soft computing-based
approach to assess the reusability of software components.
The work aimed at aiding developers to select the best
component in terms of its reusability. In their research, four
factors, on which reusability of components depends, were
identified. These are customizability, interface complexity,
portability, and understandability. The empirical work was
carried out with 40 components collected from www.jars.
com and www.elegantjbeans.com. Applying ANN soft
computing approach, network is trained on training data
by considering different number of hidden neurons for two
training functions, namely trainlm and trainbr, to get the
best results. This network was further validated by applying
the proposed approach on test data. The adaptation learning
function selected for the experiment was “learngdm.”
Performance function used was root-mean-square error
(RMSE), with “tan-sigmoid” as the transfer functions in
both layers. Results obtained showed that the network was
able to predict the reusability of components with optimum
performance and with an RMSE of 0.1348 using trainlm
as the training function. The limitation of the work was
in the limited number of data used to train the network. It
was submitted that using more number of components may
produce better results/accuracy for the training and testing.

Sagar et al . [13] discussed reusability in relation to
component-based development (CBD) and proposed a
reusability metrics for black-box components. It identifies
factors affecting reusability as customizability, interface
complexity, portability, and document quality. In the
study, fuzzy logic-based approach was used to estimate
the reusability of components using triangular membership
functions. The authors used two classroom-based Java
beans components, namely Calculator and Chart B for
validation. Reusability values of 0.71 and 0.3124 were

Component
Extraction

Metrics
Computation

Reusability
Evaluation

The data are used to
compute for the values of

the variables/quality
factors

Component Reusability
Level shall be predicted

Figure 3: Study methodology

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 71

arrived at proving that FIS is able to predict reusability of
components with an acceptable level of accuracy. Further,
it was submitted that the adopted approach can be validated
against other approaches for estimated reusability of
components.

Singh and Toora[15] applied neuro-fuzzy technique on a case
study which they took from a reputed journal. The case study
was concerned with the reusability of software components.
The reusable components/attributes were coupling, complexity,
volume regularity, and reuse frequency. They proved that
neuro-fuzzy model yields less percentage average error as
compared to standalone fuzzy logic and neural network. It also
produces greater accuracy for software reusability as compared
to FIS and ANN.

Kamalraj et al.[16] proposed concept of “stability-based
clustering” method focusing on “stability” metric of
component(s) and “clustering analysis” of data mining.
Data mining technique that may help to maintain the reuse
repository with quality reusable components was proposed.
The data mining was used for analyzing bulk of data to
extract the knowledge from them. Applying data mining
on software engineering to simplify the data handling
results in reduced efforts and cost in various aspects. Data
mining was given very effective approach like “clustering
analysis” to group the elements as per the required data
item. Stability is an essential factor to represent the kind
of dependency among components and communication
among the components and their interior elements. Hence,
by applying “stability-based reuse component repository,”
it can help the total system development with higher
productivity in a very short period. In the research, stability
was only introduced to track the type of dependency among
components, communication among them and their interior
elements; thus, stability was not used to determine the level
of reusability of components.

In Jatain and Gaur,[17] emphasis was laid on the estimation
of reusability of components by identifying some quality
attributes of components which influence reusability. The five
identified factors are customizability, configurability, interface
complexity, portability, and compatibility. Fuzzy logic was
employed as the soft computing approach adopted to test for
reusability of four components. The approach was used to
estimate reusability of some real-time projects. This result
showed that to enhance the reusability factor of component, its
customizability, configurability, compatibility, and portability
should be high, whereas interface complexity should be low.
However, the study’s limitation hinges on further validation
of the approach used.

Ravichandran et al.[18] developed an automated process of
component selection using ANFIS-based technique using

14 reusable component’s parameters. Neuro-fuzzy-based
approach was adopted to select optimal reusable components
efficiently. The developed approach was validated with three
data sets for three proposed software architectures. The results
showed that the proposed approach was able to predict the
reusability of these components with an acceptable accuracy.
However, stability was used as a fuzzy input with variables
such as low, medium, and high in the ANFIS structure, without
reference to porting of the components as suggested in their
definition.

Christopher and Chandra[19] proposed a multicriteria fuzzy-
based approach for predicting software requirement stability
based on complexity point measurement and for finding out
the complexity weight based on requirement complexity
attributes such as functional requirement complexity, non-
functional requirement complexity, input-output complexity,
interface, and file complexity. The research paper discussed
the importance of measuring the requirements changes for
the lack of instability in the requirements. The prediction
model for requirements stability approach provides the
solution for measuring the requirements changes based
on the complexity point measurement model. The work,
however, did not justify nor demonstrate the applicability
of the model for developing maintenance and transition
projects based on different complexity attributes and
different adjustment factors.

Aversano [20] provided the subset of the architectural
components of the software project that could be actually
reused. The paper presented an empirical study aimed at
assessing software architecture stability and its evolution
along the software project history. The study entailed the
gathering and analysis of relevant information from several
open source projects. The paper evaluated the stability of
the core architecture during the development cycle of each
software project, by adopting two metrics defined in the initial
stage of the process. The analysis performed considered
software systems developed using different paradigms, with
different evolution trends and concerning different application
domains. The work described in the paper was basically
devoted to the study of the stability of the architectural
core of a software project with the aim of understanding the
potential reusability of their software component. The study
only handled only stability measurement as it is related to
architectural level of software leaving other aspects in which
stability can be applied.

Kumar et al.,[6] however, adopted multidisciplinary technique
of ANFIS in the assessment of component reusability. In
the study, four dependent factors, namely customizability,
interface complexity, understandability, and portability, were
used to estimate the reusability of software components. The
result obtained using ANN approach and using data from

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 72

Sharma et al. (2009) was an RMSE of 0.1852. Applying
ANFIS approach to the same set of data yielded an RMSE
of 0.1695, which shows that neuro-fuzzy gives a better and
more accurate reusability result. The comparative analysis of
the proposed ANFIS and the existing ANN was carried out on
48 Java components. It was, however, opined that accuracy of
the used method is subject to availability of substantial number
of data/components.

Goel and Sharma[9] taken into account three different factors
for determining reusability of software components and
then proposed a model for reusability assessment using
the ANFIS. The quality factors used include coupling,
complexity, and portability. The experiment used 338 records
retrieved from open source produced an RMSE of 0.042482.
It was suggested that new factors such as understandability,
cohesion, clarity, and generality can also be added, and the
cumulative effect of those factors can be seen on the future
predictions. Furthermore, different techniques can be used
other than ANFIS to predict reusability such as support
vector machine. Finally, it was submitted that a much
better generalized approach is expected if real-time data are
considered.

Singh and Tomar[8] identified four attributes for estimating
reusability of black-box components. The reusability metric
was parameterized using component interface complexity,
component understandability, component customizability,
and component reliability. The project made use of file upload
component of the Apache Commons project. The work proved
that the proposed metrics were able to determine reusability.
It was, however, submitted that the work requires further
validation, suggesting that the weight values for the estimation
of reusability be adjusted using neural networks.

Ekanem and Woherem[21] presented techniques for assessing
the stability of components extracted from legacy applications
using software maturity index. The research presents a
technique for assessing the stability of components extracted
from legacy applications using software maturity index.
The practical demonstration of the approach was based
on maintenance data generated with RANDBETWEEN
function of spreadsheet package on three legacy applications
used in the demonstration. The research work was designed

as experimental research with the following processes:
(i) Review of relevant documentation, (ii) randomization of
the needed research data using RANDBETWEEN function
in spreadsheet program, (iii) data coding and analysis, and
(iv) results interpretation and discussions. The ranking scheme
comprises the following ordered items, highly stable, fairly
stable, stable, unstable, fairly unstable, and highly unstable.
However, stability of legacy components was measured using
maturity index but with no recourse to the reusability of the
component.

The works of Kumar et al.[6] and Goel and Sharma[9] surpassed
others in terms of result accuracy as a result of the approach
used (ANFIS). Goel and Sharma,[9] however, call for the
validations of the various results using different approaches and
experimenting with components other than Java components.
This work, therefore, researches into these noticeable gaps
as a way of contributing to works on component reusability
assessment.

METHODOLOGY FOR THE STUDY

This study adopts:
1.	 CBD approach: This methodology helps to build

component analysis tool for accessing common software
components;

2.	 Metric-based approach: This methodology aids to measure
the degree to which a component is reusable Table 1;

3.	 Soft-computing approach: This methodology predicts the
certainty for reusability.

The following procedures were followed in ensuring a
successful implementation of the work:
1.	 Commercial off-the-shelf software components were

extracted from the third-party software vendors. According
to Sharma et al.,[4] the key to the success of CBSD is its
ability to use software components that are often developed
by and purchased from the third party.

Component Data Extraction
1.	 Sixty-nine software components were gotten from

four different third-party component development
organizations (www.elegantjbeans.com, www.jidesoft.
com, www.math.hws.edu, and www.codeproject.com).

Table 1: Metrics and the quality factors they measure
S. No. Metric Quality factor to measure
i. COCU – Component customizability Customizability (C) CIPUS
ii. COIC – Component interface complexity Interface complexity (I)
iii. CORE – Completeness of component return Portability (P)
iv. COUS – Component understandability Understandability (U)
v. COST – Component stability Stability (S)

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 73

Table 2 shows the sources, nature, and numbers of the
components.

2.	 Appropriate metrics for each quality factor that qualifies
the characteristic, reusability, were applied. We consider
the same quality factors as used by the duo of Sharma
et al.[12] and Kumar et al.,[6] with stability (in the context
of volatility) as an addendum Table 2.

3.	 Genetic-fuzzy soft computing approach was deployed for
evaluating the level of reusability of the selected components.
GFS is a system that exploits genetic algorithms to
automatically generate or optimize the knowledge base of
a fuzzy system since the fuzzy system is not able to learn
on its own. Researches have shown that hybridized genetic
algorithm gives a more accurate predictive result.[22-25]

DESIGN

Adapting Kumar et al. (2013) approach and establishing
the need for stability as a factor for component reusability
measurement,

Let Rcn=Fcn[Xn, Yn, Zn, Jn, Kn]� (1)

Where:
Rcn is the reusability of component.
Fcn is implemented using genetic fuzzy with Xn, Yn, Zn,

Jn, and Kn as input-dependent variables, representing
customizability (component customizability), interface
complexity (component interface complexity), portability
(completeness of component return), understandability
(component understandability), and stability (component
stability), respectively.

In the proposed model, GFS is developed, trained, and
tested using MATLAB software. The steps involved in the
development of the system [Figure 4] are as follows:
1.	 Extract component data
2.	 Compute the metric value of Xn, Yn, Zn, Jn, and Kn

3.	 Represent the variables in Fuzzy format
4.	 Load values of Xn, Yn, Zn, Jn, and Kn into fuzzy toolbox
5.	 Apply the Genetic Optimizer to tune the knowledge base
6.	 Compute the fitness value until the threshold/termination

is reached.

The detailed model is presented in Figure 5

ORGANIZATIONAL STRUCTURE

The operational structure of the GFS for component reusability
prediction was constructed using UML (use case, sequence,
and activity diagrams) to describe the logical design that is
implementation-independent design of the system. This shows
the system’s components and their relationships as it appears
from user’s inputs to processing of the tasks.

Use Case
Figure 6 shows the major users of the system, namely the software
developers, the component developers, the component library
administrator, and the component users. They all have possible access
to six major operations, which are LOGIN, POPULATE DATA,
RUN REUSABILITY TEST, GUIDE, FEEDBACK, and EXIT.

Sequence Diagram
Figure 7 shows the sequence diagram of the proposed system.

Activity Diagram
This is used to model the procedural flow of actions/events/
activities that occurred in a system. It describes the use case and the
sequence models. Figure 8 shows the system’s activity diagram.

SYSTEM IMPLEMENTATION

System implementation refers a system life cycle phase in
which the constructed system is tested and put into operation. It
is the actualization of a specified designed and modeled system.

Figure 4: Component reusability prediction model

Table 2: Components used
S. No. Component source Nature of components Number of components Period of extraction
1. www.elegantjbeans.com Java components 48 March 2016
2. www.jidesoft.com Java components 4 April 2016
3. www.math.hws.edu Web components 13 October 2016
4. www.codeproject.com .Net components 4 November 2016

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 74	 Available at www.aujst.com 74

Figure 5: Detailed genetic-fuzzy model for component reusability prediction

Figure 6: Use case diagram of the proposed system

Implementation Approach
Figure 9 is the adapted agile (feature driven) development
model.

Implementation Flow
Figure 10 shows the flow diagram of the system implementation
pattern (adaptive neuro-fuzzy inference system and genetic-
fuzzy system).

Algorithm (ANFIS)
	 Select Loader
		 If loader = ANFIS, load cipus-run.m
			 browse to retrieve training data
			 load training data
			 if fileext = ‘*.csv’, ‘load successful’
				 else ‘load unsuccessful’, reload
			 endif
			 browse to retrieve testing data
			 load training data
			 if fileext = ‘*.csv’, ‘load successful’

				 else ‘load unsuccessful’, reload
			 endif
		 End Select
		 RUN Reusability R MSE
		 VIEW Reusability RMSE

Algorithm (GFS)
	 Select Loader
		 If loader = GFS, load myga.m
			 load fuzzy-excel formatted file (loaddata.m)
			 if fileext = ‘*.csv’, ‘load successful’
			 else ‘load unsuccessful’, reload
		 endif
		 load/call/invoke ga_fitfunc.m
		 if load_status = ‘correct’, proceed
			 else re-load/re-call/re-invoke fitness function
		 endif
	 End Select
	 RUN Reusability RMSE
	 VIEW Reusability RMSE

EXPERIMENTAL EVALUATION

The FIS Properties
Table 3 presents the details/structure of the FIS design
properties.

The ANFIS Evaluation Parameters
Table 4 shows the specifications of the ANFIS evaluation
parameters.

The GA Optimization Parameters and Algorithm
Table 5 shows the specifications of the parameters used for
the GA.

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 75

Figure 8: Activity diagram depicting the proposed system
Keys: CDC: Check data compatibility, DNC: Data not compatible, DC: Data compatible, R: Report on DNC, CA: Check availability,

A: Available, NA: Not available, CSS: Check submission status, SS: Submission successful, SF: Submission failed, I: Iterate? Y: Yes, N: No

Figure 7: Sequence diagram of the proposed system

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 76

Statistical Representation and Comparative
Analysis
Table 6 shows the RMSE values of the two approaches (ANFIS
and GFS) for the selected components.

Figure 11 represents the comparative chart for the ANFIS and
GFSs RMSE in which GFS proved to have lower RMSEs
(0.0019), implying better predictor.

Table 7 shows the aggregate values of Table 6 for the three
components selected and for the five quality factors in use.

Analyzing with SPSS and using ANOVA (analysis of variance),
the result is shown in Table 8.

From Table 8, java components proved more reusable as it recorded
the least standard error (0.07935) compare to.Net component’s
0.26680 and web component’s 0.30975. Figure 12 shows the
reusability prediction level of the various software components used.

FINDINGS

The followings are the findings from the study:

Figure 9: Adapted FDD model

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 77

1.	 The results of the findings show that GFS with
an RMSE of 0.0019 provides better reusability
prediction accuracy compare to ANFIS with an RMSE
of 0.1480.

2.	 The experiments conducted showed that Java components,
with an S.E. of 0.07935 proved more reusable compare to
web component’s S.E. of 0.30975 and.Net component’s
S.E. of 0.26680.

Figure 10: Implementation flow

CONTRIBUTIONS TO KNOWLEDGE

The study established:
1.	 A GFS for the evaluation of software component

reusability, with the results proving the new system a better
predictor than the most commonly used system (ANFIS).

2.	 Stability (in the context of volatility) as a factor that also
determines reusability. This study has been able to prove

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 78

Table 4: Adaptive neuro‑fuzzy inference system specifications
S. No. Parameters Main attribute Others
1. Testing data 20 data 29% of the entire data used
2. Training data 49 data 71% of the entire data used
3. Number of epoch 50
4. Error tolerance 0
5. Rules 243
6. Logical operator AND
7. Inputs 5 Customizability, interface complexity, portability,

understandability, stability
8. Input MF 3 Low, medium, and high
9. Output 1 Reusability
10. Output MF 3 Low, medium, and high
11. Optimization method Hybrid

Table 3: FIS structure/properties

Parameter FIS
names (s)

Property default/range value/
parameter range

Input parameter 1
Input parameter 2
Input parameter 3
Input parameter 4
Input parameter 5

COCU
COIC
CORE
COUS
COST

[0 1]
[0 1]
[0 1]
[0 1]
[0 1]

Input FIS type: Sugeno

MF type: Triangular
Output name: Reusability
Output type: Linear
Input parameters: Low [0 0.25 0.5]

Medium [0.25 0.5 0.75]
High [0.5 0.75 1]
Low [0 0.25 0.5]
Medium [0.25 0.5 0.75]
High [0.5 0.75 1]
Low [0 0.25 0.5]
Medium [0.25 0.5 0.75]
High [0.5 0.75 1]
Low [0 0.25 0.5]
Medium [0.25 0.5 0.75 0]
High [0.5 0.75 1 0]
Low [0 0.25 0.5 0]
Medium [0.25 0.5 0.75 0]
High [0.5 0.75 1 0]

Output parameters: Low [0 0 0 0 0 0]
Medium [0.5 0.5 0.5 0.5 0.5 0.5]
High [1 1 1 1 1 1]

FIS: Fuzzy inference system

that asides the commonly deployed attributes such as
customizability, interface complexity, portability, and
understandability (documentability), stability is a factor
worthy of consideration while measuring reusability.

3.	 Software component assessment with other component
types other than Java components. With researches
showing that most studies on reusability of software
components were done experimenting only with Java
components, this study was able to carry out its assessment
of component reusability using Java, web, and.Net
components. The research took a leap to evaluate the level
of reusability of each component, with Java components
proving more reusable than the rest two component types.
The study, therefore, contributed to the increasing body of
knowledge that Java components are more reusable than
other component types.

CONCLUSION

The essentiality of software component reusability no doubt
aids software development cost and time, however, of greater
necessity is the issue of measuring to ascertain the level of
reusability of the selected software components for reusability.
This, many researchers agreed with and deployed different
evaluation techniques in assessing the level of reusability of
software components.

Consequently, this work presented an evaluation of software
components reusability using GFS. The study utilized five
quality factors in measuring the reusability of 69 software
components. The metric values for the selected five quality
factors were computed using the data extracted from the
components used. The design and detail analysis of the
proposed system were elaborated upon. The system structure

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 79

Table 5: GA specifications
Parameters Main attribute Others
Data loaddata.m (matlab file) x = csvread(“data.csv”)
Fitness function ga_fitfunc (matlab function) y = (x (1)+x (2)+x (3)+x (4)+x (5))/5
Population Randomized Constraint dependent
Bounds Lower: [0 0 0 0 0]

Upper: [1 1 1 1 1]
Selection Tournament Size: 4
Mutation Adaptive feasible
Crossover Two points (double)
Stopping criteria Generation
Fitness scaling Scaling function Rank

S. No. Component type COCU COIC CORE COUS COST RMSE
(ANFIS)

RMSE
(GFS)

1 Java components 1 1 0.92 0.9 1 0.1741 0.142

2 Java components 1 1 0.46 0.75 1 0.1727 0.142

3 Java components 0.91 1 0.46 0.75 0 0.1703 0.1367

4 Java components 0.81 1 0.37 1.05 1 0.1687 0.1367

5 Java components 0.5 1 0.25 0.45 1 0.1674 0.1367

6 Java components 0.75 0.5 0.68 0.75 0 0.1665 0.1367

7 Java components 0.75 0.5 0.68 0.7 1 0.1656 0.1367

8 Java components 0.93 1 0.82 1.05 1 0.1652 0.1367

9 Java components 1 1 0.5 0.45 0 0.1648 0.1305

10 Java components 0.73 0.68 0.44 1.05 0 0.1644 0.1305

11 Java components 0.78 1 0.57 1.2 1 0.1639 0.1305

12 Java components 1 1 0.65 1.2 1 0.1633 0.1302

13 Java components 0.75 0.5 1 1.05 1 0.1628 0.1273

14 Java components 0.74 0.48 1 1.05 0 0.1623 0.1263

15 Java components 0.98 1 0.77 1.2 1 0.1617 0.1263

16 Java components 0.79 1 0.63 1.2 1 0.1611 0.1263

17 Java components 1 1 0.61 1.2 1 0.1605 0.1177

18 Java components 0.89 1 0.65 1.2 1 0.1599 0.1052

19 Java components 0.82 0.74 0.37 1.05 1 0.1592 0.08672

20 Java components 0.8 0.68 0.86 1.05 1 0.1585 0.08672

21 Java components 0.91 1 0 0.9 1 0.1578 0.05859

22 Java components 0.92 0.86 0 0.9 1 0.1571 0.05859

23 Java components 0.92 0.92 0 0.9 1 0.1563 0.03984

24 Java components 0.97 0.93 0 0.9 1 0.1558 0.03672

25 Java components 0.94 0.96 0 0.9 1 0.1556 0.03672

26 Java components 0.92 0.94 0 0.9 1 0.1551 0.03672

27 Java Components 0.95 1 0.59 1.2 0 0.1549 0.03672

Table 6: Components’ RMSE values for ANFIS and GFS

(Contd...)

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 80

S. No. Component type COCU COIC CORE COUS COST RMSE
(ANFIS)

RMSE
(GFS)

28 Java components 0.86 1 0.55 1.2 0 0.1543 0.03672

29 Java components 0.96 1 0.69 1.2 1 0.154 0.03672

30 Java components 0.84 1 0.45 1.2 1 0.1535 0.03359

31 Java components 1 1 1 0.55 1 0.1525 0.03325

32 Java components 0.97 1 0.46 1.2 0 0.1515 0.02754

33 Java components 0.95 1 0.59 1.2 1 0.1523 0.02754

34 Java components 0.98 1 0.48 1.2 1 0.1513 0.02583

35 Java components 0.97 1 0.49 1.2 1 0.1513 0.02583

36 Java components 1 1 0.44 1.2 1 0.1515 0.01489

37 Java components 0.93 1 0.58 1.2 1 0.1512 0.01333

38 Java components 0.84 0.72 0 1.2 1 0.1515 0.01191

39 Java components 0.67 0.67 0 0.3 1 0.1511 0.01191

40 Java components 0.95 0.96 0 1.2 1 0.1514 0.01191

41 Java components 0.76 0.8 0.89 1.05 1 0.1507 0.01191

42 Java components 0.97 0.98 0.5 0.75 1 0.1513 0.01191

43 Java components 0.93 0.93 1 0.78 1 0.1505 0.01191

44 Java components 1 1 0.86 1.05 1 0.1508 0.01191

45 Java components 0.71 0.78 0.67 0.75 1 0.1499 0.01141

46 Java components 0.67 0.67 0.33 0.25 1 0.1507 0.01025

47 Java components 0.67 0.67 0.4 0.9 1 0.1497 0.007224

48 Java components 0.75 0.5 0 0.5 1 0.1506 0.007224

49 Java components 0.6 0.8 0.25 0.63 0 0.1494 0.007224

50 Java components 1 0.5 0 1 1 0.15 0.007224

51 Java components 1 0.5 0 0 0 0.1492 0.007224

52 Java components 1.15 0.44 0.8 0.45 0 0.1497 0.006442

53 Web components 0.5 0 4 0 0 0.1489 0.005661

54 Web components 0.5 0 2 0.58 1 0.1496 0.005661

55 Web components 1.11 0.45 0.74 0.47 1 0.1488 0.004099

56 Web components 0.5 0 1.5 0.5 1 0.1493 0.004099

57 Web components 0.86 0.58 2.25 0 1 0.1485 0.004099

58 Web components 1.07 0.47 0.85 1 1 0.1492 0.003925

59 Web components 1 0.5 0.83 0 1 0.1485 0.003925

60 Web components 0.5 0 2 0.88 1 0.149 0.003925

61 Web components 0.5 1 6 1 0 0.1484 0.003925

62 Web components 0 0 3 2 1 0.1487 0.003832

63 Web Components 0.99 0.5 0.88 2.67 1 0.1483 0.00368

64 Web components 0.5 0 1 0.3 0 0.1485 0.003362

65 Web components 0.5 0 2 0.15 0 0.1481 0.003362

66 .Net components 0.83 0.33 2.67 0.83 1 0.1483 0.003362

67 .Net components 0.84 0.31 2.45 0.84 0 0.148 0.00266

Table 6: (Continued)

(Contd...)

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 81

Figure 11: Adaptive neuro-fuzzy inference system and genetic-fuzzy system root-mean-square error

Figure 12: Components’ reusability prediction level

S. No. Component type COCU COIC CORE COUS COST RMSE
(ANFIS)

RMSE
(GFS)

68 .Net components 0.83 0.33 2.18 0.83 1 0.1482 0.001879

69 .Net components 0.65 0.9 0.71 0.65 1 0.1479 0.001879

RMSE: Root‑mean‑square error, ANFIS: Adaptive neuro‑fuzzy inference system, GFS: Genetic‑fuzzy system, COCU: Component
customizability, COIC: Component interface complexity, CORE: Completeness of component return, COUS: Component
understandability, COST: Component stability

Table 6: (Continued)

and the visible activities that take place within the system
were also presented using appropriate UML design. For the
implementation, GFS was developed and deployed using
MATLAB as the software tool.

The result of the evaluation shows that GFS predicts more
accurately with an RMSE of 0.0019 as against the commonly

used method, ANFIS, with an RMSE of 0.1480, adjudging
GFS as a better predictor.

DIRECTION FOR FURTHER STUDIES

The designed architecture presented in this study is simplified
such that it can easily be modified to enable adaptation and
application to other research domains such as monitoring
system, decision support system, data mining system, and
control system. The hybridized power of the system can also be
extended to solve other related and more advanced intelligent
applications.

Five quality factors were used in the determination of the
reusability of the selected components, other quality factors as
related to software components (e.g., operability, statelessness,
etc.) can also be considered in future research work in the
prediction of software component reusability.

Table 7: Computed aggregate values of component types

Component types COCU COIC CORE COUS COST

Java 0.88 0.86 0.48 0.92 0.79

Web 0.66 0.27 2.08 0.73 0.69

.Net 0.79 0.47 2 0.79 0.75

COCU: Component customizability, COIC: Component interface complexity, CORE: Completeness of
component return, COUS: Component understandability, COST: Component stability

Olusola: Evaluating software components reusability

	 Available at www.aujst.com 82

REFERENCES

1.	 Washizaki H, Yamamoto H, Fukazawa Y. A metrics Suite for
Measuring Reusability of Software Components. Proceedings of
the 9th International Symposium on Software Metrics. Sydney,
Australia: 2003. p. 201-11.

2.	 Gill NS. Importance of software component characterization for
better software reusability. ACM SIGSOFT Softw Eng Notes
2006;31:1-3.

3.	 Sharma A, Kumar R, Grover PS. Critical Survey of Reusability
Aspects for Software Components. Proceedings of the World
Academy of Science, Engineering and Technology, Bangkok,
Thailand: 2007. p. 419-24.

4.	 Sharma A, Kumar R, Grover PS. Investigation of reusability,
complexity and customisability for component-based systems.
ICFAI J Inf Technol 2006;2:21-4.

5.	 Fazal-e-Amin, Mahmood, AK, Oxley A. A review of software
component reusability assessment approaches. Res J Inf Technol
2011;3:1-11.

6.	 Kumar V, Kumar R, Sharma A. Applying neuro-fuzzy approach
to build the reusability assessment framework across software
component releases an empirical evaluation. Int J Comput Appl
2013;70:41-7.

7.	 Thakral S, Sagar SV, Vinay SE, Reusability in component
based software development a review. World Appl Sci J
2014;31:2068‑72.

8.	 Singh AP, Tomar P. Estimation of component reusability through
reusability metrics. Int J Comput Control Quantum Inf Eng
2014;8:1865-72.

9.	 Goel S, Sharma A. Neuro-fuzzy based approach to predict
component’s reusability. Int J Comput Appl 2014;106(5):33-38.

10.	 Kumar A, Chaudhary D, Kumar A. Empirical evaluation of
software component metrics. Int J Sci Eng Res 2014;5:814-20.

11.	 Aman H. A quantitative method of verifying metrics using
principal component analysis and correlation analysis. J IEICE
2002;10:1000-2.

12.	 Sharma A, Kumar R, Grover PS. Reusability assessment for
software components. ACM SIGSOFT Softw Eng Notes
2009;34:1-6.

13.	 Sagar S, Nerurkar NW, Sharma A. A soft computing based
approach to estimate reusability of software components. ACM
SIGSOFT Softw Eng Notes 2010;35:1-5.

14.	 Rotaru OP, Dobre M. Reusability Metrics for Software
Components. AICCSA ‘05 Proceedings of the ACS/IEEE 2005
International Conference on Computer Systems and Applications.
Washington, USA: 2005. p. 24-31.

15.	 Singh H, Toora VK. Neuro-fuzzy logic model for component
based software engineering. Int J Eng 2011;1:303-14.

16.	 Kamalraj R, Kannan AR, Ranjani P. Stability-based component
clustering for designing software reuse repository. Int J Comput
Appl 2011;27:33-6.

17.	 Jatain A, Gaur D. Estimation of Component Reusability
by Identifying Quality Attributes of Component: A Fuzzy
Approach. Proceedings of the Second International Conference
on Computational Science, Engineering and Information
Technology, Coimbatore, India: 2012. p. 738-42.

18.	 Ravichandran K, Suresh P, Sekr KR. ANFIS approach for optimal
selection of reusable components. Res J Appl Sci Eng Technol
2012;4:5304-12.

19.	 Christopher D, Chandra E. Prediction of software requirements
stability based on complexity point measurement using multi-
criteria fuzzy approach. Int J Softw Eng Appl 2012;3:101-15.

20.	 Aversano L, Molfetta M, Tortorella M. Evaluating Architecture
Stability of Software Projects. IEEE Conference; 2013.
p. 417‑24.

21.	 Ekanem BA, Woherem E. Legacy components stability
assessment and ranking using software maturity index. Int J
Comput Appl 2016;134:975-8887.

22.	 Sandhu PS, Dalwinder SS, Singh H. A comparative analysis of
fuzzy, neuro-fuzzy and fuzzy-ga based approaches for software
reusability evaluation. ProcWorld Acad Sci Eng Technol
(WASET) 2008;2:292-5.

23.	 Hegazy O, Soliman OS, Toony AA. Hybrid of neuro-fuzzy
inference system and quantum genetic algorithm for prediction in
stock market. Issues Bus Manage Econ 2014;2:94-102. Available
from: http://www.journalissues.org/IBME. [Last accessed on
2017 Oct 13].

24.	 Fazlic LB, Avdagic K, Omanovic S. GA-ANFIS expert system
prototype forprediction of dermatological diseases. Eur Fed Med
Inf 2015;2015:622-6.

25.	 Dhokley W, Ansari T, Fazlic N, Mohd.Hafeez H. New improved
genetic algorithm for coronary heart disease prediction. Int J
Comput Appl 2016;136:975-8887.

This work is licensed under a Creative Commons Attribution Non-Commercial 4.0
International License.

Table 8: ANOVA analysis of component types’
aggregated values
Component
types

n Mean Standard
deviation

Standard
error

Java 5 0.7860 0.17743 0.07935
Web 5 0.8860 0.69263 0.30975
.Net 5 0.9600 0.59657 0.26680
Total 15 0.8773 0.50318 0.12992

