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ABSTRACT

It is the goal of project planners to complete a project at a minimal time and cost. Additional demand for resources which result in increased 
cost is required to complete the project within a shorter time period. This problem of time-cost trade-off (TCT) has led to several studies 
conducted to find an optimal solution using different optimization techniques such as the heuristic method and other optimization techniques. 
However, in these studies using the heuristic method, the researchers mainly use deterministic activity durations to model the TCT problem. 
TCT analysis using deterministic durations will only produce deceiving results which are unrealistic. With activity durations likely to deviate 
from actual durations, this study presents a heuristic-based approach for time-cost optimization by taking into account the impact of risk and 
uncertainty of activity duration. This was done using a probabilistic approach through simulation to develop realistic durations and use these 
durations as input to reschedule the critical path method network. A numerical example problem was applied and the results were compared to 
existing studies to understand the impact of risk and uncertainty on TCT analysis. This approach will guide decision-makers in making efficient 
and effective decisions in TCT optimization problems.
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INTRODUCTION

Completing projects at a minimal time and within a minimum 
cost are the main objectives of construction projects. The need 
for work from contractors has resulted in clients tightening 
their requirements. Project managers are under intense 
pressure to complete the project under tight deadlines subject 
to huge penalties if they failed to complete the project within 
the stipulated deadline. One of the best solutions to meeting 
deadline projects has been the use of crashing technique to 
shorten the project duration. However, as the project’s duration 
is reduced, the total project cost increases and the more the 
project’s duration is shortened, the more the total cost increases. 
This means that there is a trade-off between time and cost 
which requires an optimum solution to complete the project. 
Feng et al.[1] argued that the less expensive the resources 
used, the more duration they require to complete an activity. 
Hegazy[2] supports this argument with an example that using 

more productive equipment or hiring more workers may save 
time but may result in increased cost. Figure 1 depicts the 
relationship of time-cost trade-off (TCT), showing the normal 
and crash duration and the corresponding normal cost and crash 
cost for completing an activity using different construction 
options as P1, P2, P3, and P4. In any case, resource allocation 
decisions made during the early start of the activities control 
the overall project time and cost of the project. Finding the 
most desirable duration and cost to complete a project is the 
major challenge of project planners. However, since a project 
should be executed to yield a profit for the organization, project 
planners must utilize effective means to complete the project 
within a limited time. The critical path method (CPM) has 
been the project planners’ favorite project planning technique. 
The CPM helps to identify the critical activities which may 
impact the overall project’s completion duration if delayed. 
This presents project planners the opportunity to identify those 
critical activities and use the appropriate resources to complete 
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each activity. Hence, to perform TCT analysis, activities on the 
critical path can be crashed to reduce their duration and using 
optimum resources to minimize the total project cost. Several 
studies have been conducted on TCT problems to discuss the 
feasible techniques to solve TCT problems in construction 
projects.

TCT concept has been defined and explained in many ways 
by different authors. The TCT is defined by Abbasnia et al.[3] 
as a process to identify suitable construction activities for 
speeding up and for deciding how much so as to attain the best 
possible savings in both time and cost. The TCT can also be 
defined as the process of finding the optimum time at which the 
project can be completed within a desirable minimum cost. In 
their research, Azaron et al.[4] applied genetic algorithm (GA) 
technique to develop a multiobjective model for TCT problem 
in program evaluation and review technique (PERT) network 
with generalized distribution of activity durations. Al Haj and 
EL-Sayegh[5] presented a nonlinear integer programming model 
developed to solve the time-cost optimization problem by 
taking into account the impact of total float loss. Eshtehardian 
et al.[6] also investigated stochastic TCT problems using GA 
and fuzzy logic theory that accounts for uncertainties in cost to 
help select specific risk levels. In an attempt to characterize the 
amount of variability in networks, Bowman[7] proposed a model 
for stochastic gradient-based TCTs in PERT networks using 
simulation to solve TCT problems. Criticizing the existing GA-
based approach for solving TCT problems, Li et al.[8] presented 
an integrated machine learning and GA which generates 
time-cost curves from historical data to solve TCT problems. 
Pathak and Srivastava[9] also formulated a model that integrates 
a fuzzy logic framework with hybrid metaheuristic to solve 
TCT problems within an uncertainty environment. Yang[10] 
analyzed the impact of budget uncertainty on project TCT and 
found that a higher degree of budget uncertainty presents a 
tighter financial constraint, which needs an extra contingency. 
Vanhoucke[11] proposed a new brand-and-bound algorithm 
that uses lower bound calculation for discrete TCT problem 
without using time-switch constraints. The author proposed this 
model to improve the previous model developed by Yang and 
Chen,[12] who used time-switch constraints. Ke et al.[13] studied 
modeling stochastic project TCTs with time-dependent activity 
durations. Ballesteros-Perez et al.[14] recently studied nonlinear 
TCT models of activity crashing: Application to construction 
scheduling and project compression with fast tracking. Chua 
et al.[15] also proposed a model using GA to solve conventional 
TCT problems with resource consideration. Robinson[16] used 
a dynamic programming solution to solve cost-time trade-off 
for CPM. In providing a modification to existing models with 
fuzzy sets theory, Zheng and Ng[17] developed a model for 
stochastic time-cost optimization model by incorporating fuzzy 
sets theory and non-replaceable front. Elbeltagi et al.[18] used 
five different evolutionary-based optimization models (GA, 
memetic algorithm, particle swarm optimization [PSO], ant 

colony, and shuffled frog leaping) to solve TCT problem and 
compared their results. Aminbakhsh and Sonmez[19] presented 
a discrete PSO method for the large-scale discrete TCT 
problem.[20] In another study presented a hybrid simulation-
optimization approach for the robust discrete TCT problem. 
Mixed-integer nonlinear programming optimization model 
was developed by Klanšek and Pšunder[21] to solve nonlinear 
discrete TCT problems.

The heuristic method has been and still remains one of the 
most useful techniques to solve TCT problems. Siemens[22] 
was among the first to have used the heuristic method, through 
cost ratio approach to solve TCT problems. Recently, some 
researchers have also used the heuristic algorithm to model 
time-cost optimization in a construction project. Biswas 
et al. and Nikoomaram et al.[23,24] adopted a heuristic method 
to develop a model to solve different TCT problems in 
construction projects.

Despite the useful application of the heuristic method to 
solve TCT problems, these models mainly use deterministic 
durations to model the TCT problem. However, in reality, 
activities may not be completed as planned. Some activities 
may take a longer time to complete, while others may take 
a shorter time to complete. The uncertainties in the activity 
duration may affect the project duration, as well as the cost. 
Using deterministic activity durations may lead to the wrong 
selection of construction options (resource allocation), thus 
leading to selecting the wrong optimum solution to TCT 
problem. Uncertainty variables may include productivity 
rate, on-time availability of resources on site before starting 
an activity, and weather conditions. Hence, to improve the 
accuracy of optimum solution in TCT analysis, this study 
presents a heuristic-based approach for time-cost optimization 
by taking into account the impact of risk and uncertainty 
of activity duration. This was done by using a probabilistic 
approach through simulation to develop realistic durations 
and use these durations as input to reschedule the critical 
path method (CPM) network. Simulation deals with the 
uncertainties of activity duration in a project.

This study developed a multiobjective time-cost optimization 
problem in CPM-PERT network using realistic (random) 
durations through simulation as input. Developing a heuristic-
based time-cost optimization problem by considering the risk 
and uncertainty of activity duration will guide decision-makers 
in making efficient and effective decisions in TCT optimization 
problems.

MATERIALS AND METHODS

In this section, we will formulate the heuristic model that 
accounts for risk and uncertainty in the activity durations 
by generating simulation durations and reschedule the CPM 
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network. The next subsections will explain how the simulation 
durations are calculated and computational steps involved in 
solving a heuristic-based time-cost optimization problem.

In almost all cases, the previous research papers on time-cost 
optimization through crashing of activity duration have been 
applied on construction projects. Therefore, this paper will also 
focus on applying the model on a simple construction project.

Generating Random Duration
To account for the uncertainty of activity duration, Monte 
Carlo simulation is applied. Activity duration can be simulated 
using probability distributions. In this study, we used triangular 
distribution to model random durations. In the triangular 
distribution technique, the expected duration of activity i (eDi) 
can be calculated using Eqn. (1)

  eDt=(ai+mi+bi)/3 (1)

Where, ai is the optimistic duration of activity i, mi is the most 
likely duration of activity i, and bi is the pessimistic duration 
of activity i. However, we used the probability distribution of 
triangular distribution to generate random or simulated duration 
for each activity. In each activity, a triangular distribution was 
assigned and the random duration was generated. We show 
how simulation durations using the triangular distribution 
were modeled in Microsoft Excel. We first established the 
optimistic, most likely and pessimistic durations for each 
activity. Then, we created a custom variable called Cvar using 
Eqn. (2), after which random number between 0 and 1 were 
generated. Finally, random activity durations were generated 
using Eqn. (3).
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Where, SimDuri is the simulation duration for activity i and 
randi is a random number generated for activity i.

These generated random durations are further simulated 
many times, and in this study, we used 10,000 iterations to 
find realistically eDi. Visual basic for application (VBA) was 
used to perform this iteration, and these generated durations 
become the actually expected durations to be used to prepare 
the network diagram (with activity uncertainty taken care of).

Cost-slope Computational Algorithm
The cost-slope method is the main heuristic method for TCT 
analysis deployed to reduce the project duration based on the 
fundamental assumption that the relationship between time 
and cost is linear. With this common assumption, cost slope of 
activity i is defined by Hegazy[25] as the rate at which the direct 
cost increases when the duration of that activity is reduced by 
a unit of time. To calculate the cost slope of each activity in 
the network, Eqn. (4) was used.
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Where, Csi is the cost slope of activity i, Cci is the crash cost of 
activity i, Nci is the normal cost of activity i, Ndi is the normal 
duration of activity i, and Cdi is the crash duration of activity i.

Computational Steps Involved in Optimizing the 
Heuristic-based TCT Problem
The objective here is to minimize the total cost of shortening 
the project duration to meet specific deadline such that the 
project’s profit is not much affected:
a. Use the simulation durations for all activities
b. Develop the CPM network
c. Calculate and identify all the paths in the network (path 

with the longest expected duration = critical path)
d. Determine the amount required to reduce each path in the 

CPM network. The amount to be reduced on each path can 
be computed using Eqn. (5)

	 	 Λpath–j=ePCompath–j–tPCom (5)

 Where, Λpath–j is the amount to be reduced on path j, 
ePCompath–j is the expected project completion time on 
path j, and tPCom is the targeted project completion time.

e. Calculate and tabulate the cost slope for each activity as 
well as defining the maximum crashing amount

f. Crash the critical activity with the least cost slope (LC-S) 
first based on the maximum amount to be crashed. If two 
or more critical paths occur, crash the activity appearing 
in both paths, or crash both activities with the minimum 
cost slope in each path.

g. Reschedule the CPM network using the crashed duration 
for that activity and calculate the project duration if the 
critical path does not change, continue to crash the activity 
until its maximum crash duration is exhausted.

h. Determine the total direct cost by multiplying the cost 
slope of the activity by the amount reduced, as well as the 
corresponding indirect cost by multiplying the estimated 
cost per day by the expected project duration.

i. Continue from step (g) until the deadline duration is 
reached.

j. Plot the total increase in direct cost against the 
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resultant crash duration. Plot also the total project cost 
(direct + indirect costs) on the same graph and determine 
the optimum option with the least total cost.

The flowchart of the heuristic-based TCT optimization which 
describes the steps involved in analyzing the TCT problem is 
depicted in Figure 2.

NUMERICAL EXAMPLE PROBLEM AND 
ANALYSIS

An example problem from a small construction project is 
considered to demonstrate the applicability and the impact of 
duration uncertainties on heuristic-based multiobjective TCT 
analysis. The scheduling project considered was previously 
applied to solve TCT problem by Biswas et al., 2016, using 
the heuristic method. For example, problem consists of six 
activities. The indirect cost of the project is assumed as 
$100/day. The project data with deterministic durations are 
shown in Table 1, which consist of activity names and their 
corresponding durations. Using the deterministic durations, the 
project was scheduled to be completed in 140 days.

Computational Steps
With reference to the data of the example problem, realistic 
durations through simulation were developed as shown in 
Table 2. These random durations are to be used as the expected 
duration of each activity. To avoid decimals in the activity 

durations, any duration above 0.5 days was taken as 1 day. 
Table 3 shows the realistic durations of the activities, as well as 
the crash duration, normal cost, and the crash cost. Deploying 
the forward and backward technique, the early start time, early 
finish time, late start time, and late finish time durations were 
calculated to determine the total project completion time. The 
expected project completion time from the network diagram 
is 144 days and the critical path is B-C-D-E. The total direct 
cost of all the activities amounts to $49,805.

To expedite the project, an optimization approach was used to 
reduced the project completion time of 144 days. In normal 
project crashing, reducing the duration increases the direct 
cost but decreases the indirect cost. Therefore, if the indirect 
cost is less than the direct cost, then an optimal or minimal 
cost can be achieved. Hence, the project can be crashed until 
the activity indirect cost becomes greater than its direct cost 
resulted from crashing the duration. However, in this study, a 
target completion time of 124 days was used to find the optimal 
cost of reducing the project duration of 144 days.

The network diagram in Figure 3 consists of three paths: Path 
1 (B – C – D – E) = 144 days; Path 2 (B – F – E) = 134 days, 
and Path 3 (A-End) = 118 days. Determining their amount to be 
crashed, Path 1 can be crashed by a total of 20 days (144–124) 
while Path 2 can be crashed by a total of 10 days (134–124). 
Path 3 needs not to be crashed since its completion time is less 
than the targeted completion time. In Table 4, the calculation of 
the cost slope of all the activities is presented. It is important 
to compute the cost- slope of all the activities and not just the 
critical path activities, in that the path can change after crashing 
an activity and will need such information.

Using these realistic expected durations from simulation, the 
CPM network is drawn as depicted in Figure 3. With the cost 
slope of each activity computed, the detailed analysis of the 
cycle computation of the total direct cost and indirect cost 
resulting from crashing the critical activities duration can be 
summarized as follows:
• 1st cycle: This cycle uses the initial CPM data, where 

the total project completion duration = 144 days. 
Indirect cost = 144 days *100/day = 14400 and total direct 
cost = 49805. Total project cost = (49805+14400) = 64205

• 2nd cycle: Identify critical path and activity with LC-S

Critical path = B – C – D – E = 144 days.

Activity with the LC-S of this critical path = activity D (60) and 
this activity can be crashed by at least 8 days. Therefore, activity 
D becomes 22 days and the CPM is recalculated as shown in 
Figure 4. There will not be any change in the critical path. The 
total project completion duration = 136 days. Indirect cost = 
136 days *100/day = 13600 and total direct cost = 49805 + 
(8*60) = 50285. Total project cost = (50285 + 13600) = 63885.

Figure 1: Time-cost relationship of an activity

Table 1: Project data with deterministic durations
Activity Predecessor Normal duration
A 120
B 20
C B 40
D C 30
E D,F 50
F B 60
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• 3rd cycle: Identify critical path and activity with LC-S.

No change in critical, Critical path = B – C – D – E but duration 
= 136 days.

Activity with LC-S of this critical path is still = activity D (60) 
which can further be crashed by 2 days. Therefore, activity D 
reaches its maximum crash duration of 20 days and the CPM is 
recalculated as shown in Figure 5. The total project completion 
duration = 134 days. Indirect cost = 134 days *100/day = 13400 
and total direct cost = 49805 + [(2*60) + (8*60)] = 50405. 
Total project cost = (50405 + 13400) = 63805

• 4th Cycle: Identify critical path and activity with LC-S. Here, 
two paths are critical: Path 1: B – C – D – E = 134 days and 
Path B – F – E = 134 days. The LC-S in Path 1 is activity 
D but cannot be crashed anymore since its maximum crash 
duration is exhausted. In Path 2, the LC-S is activity E which 
is also the least considering Path 1 when D is out. In this 
situation, both B and E can be crashed. Activity B and E both 
can crash by at least by 5 days. Hence, activity B becomes 

Figure 2: Flowchart of the heuristic-based time-cost trade-off optimization

Table 2: Realistic duration of activities generated 
through simulation
Activity Predecessor Realistic (random) duration
A 117.66
B 21.65
C B 41.68
D C 29.94
E D,F 49.96
F B 61.55
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Figure 3: Activities precedence network diagram

Figure 4: Precedence network diagram after crashing activity D

Figure 5: Precedence network diagram after crashing activity D second time

Table 3: Detailed project information of the example problem
Relationship of activities Normal Crash
Activity Predecessor Duration Cost ($) Duration Cost ($)
A 118 11,800 100 14,000
B 22 1980 17 3173
C B 42 16,800 32 23,467
D C 30 1400 20 2000
E D,F 50 3600 40 4800
F B 62 13,725 47 18,400
Total cost for project = 49,805 
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17 days and activity E becomes 45 days (359; sum of 239 
cost slope of B and 120 cost slope of E) and the network 
is recalculated as depicted in Figure 6. The total project 
completion duration = 130 days. Indirect cost = 124 days 
*100/day = 12400 and total direct cost = 49805 + (5*359) 
= 51600. Total project cost = (50330 + 12400) = 64000

In Table 5, the summary of the analysis results is presented. 
The first column shows the project duration, while the next 
columns show the corresponding indirect, direct, and the 
total costs resulting from optimizing the project duration by 
shorting the original project duration of 144 days in an attempt 
of expediting the project.

Figure 7 presents detailed results of the time-cost optimization 
problem. Figure 7 consists of four solutions: (a) Time-
direct cost relationship, (b) time-indirect cost relationship, 
(c) direct-indirect cost relationship, and (d) time-total cost 
relationship. It can be seen in Figure 7a that as project 
duration is crashed to a minimum duration, the direct cost 
of the project increases. On the other hand, in Figure 7b, 
reducing the total project duration decreases the indirect cost 
linearly. The direct-indirect cost relationship in Figure 7c 
shows that as direct cost increases as a result of shortening 
the project duration, indirect cost decreases. The optimal 

Figure 6: Precedence network diagram after crashing activity B and E

Table 4: Cost slope of activities in the network
Activity Normal Crash Cost slope

Duration Cost ($) Duration Cost ($)
A 118 11,800 100 14,000 122
B 22 1980 17 3173 239
C 42 16,800 32 23,467 667
D 30 1400 20 2000 60
E 50 3600 40 4800 120
F 62 13,950 47 18,800 338

Figure 7: (a-d) Project time-cost relationship

a
b

c d
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solution, for example, problem is depicted in Figure 7d, where 
the optimum solution occurred at 134 days and at a minimum 
total project cost of $63,805. In Figure 8, the comparison 
of the original project schedule of time and cost against the 
total project’s time and cost after crashing the project for the 
expedition is presented.

DISCUSSION AND RESULTS

This section discusses the results from the analysis of the 
TCT problem. Time and cost, which are independent of each 
other, are the two important attributes of any project. It is the 
objective of the project management team to complete the 
project within a minimum time and at the same time within 
a minimum cost. However, it is not easy to satisfy these two 
conflicting objectives at the same time. Optimization has been 
identified as the most suitable technique to model this kind of 
the problem of conflicting factors where an attempt to optimize 
(reduce) one objective increases the other objective factor. The 
results in Figure 7a show that as the project original duration is 
shortened through crashing, i.e., from 144 days to 124 days, the 
total direct cost increased from $49,805 to $51,600. The results 
in Figure 7b and Figure 8 show a decrease in the total project 
cost from $64,205 to $63,325 as project duration reduces. 
However, at some point, the total project cost increases again 
as the project is further reduced. After 134 days, where the total 
cost occurred at a minimum of $63,325, the total cost increased 
again to $64,000 at a duration of 124 days. This explains the 
real behavior of projects and the concept of optimization in 
construction projects. The time-cost optimization, for example, 

problem results in a minimum total project cost of $63,325 
and with a total project duration of 134 days. The minimum 
total cost is achieved because every time the project duration 
is reduced, the total indirect cost is decreased. This suggests 
that the project can be done in 134 days instead of the original 
144 days, and within a minimum cost of $63,325, saving 
about $880 from the original CPM schedule of $64,205. The 
results of this study are accurate and reliable and are better 
than the results presented by Biswas et al., 2016, who used 
deterministic activity durations in the TCT problem and found 
the optimum solution at 130 days. However, because this study 
incorporated risk and uncertainty analysis using probabilistic 
approach through simulation to generate realistic (random) 
activity durations, an accurate optimum solution was achieved 
at 134 days and a minimum total cost of $63,325. An accurate 
and reliable optimum solution from the TCT analysis will 
help the project management team to make better decisions 
on effectively allocating resources to complete the project.

CONCLUSION

The goal of this study was to apply a heuristic approach to 
analyze a multiobjective time-cost optimization problem by 
considering the impact of risk and uncertainty of activity 
durations on achieving the optimum solution of the TCT 
problem under consideration. The study used a probabilistic 
approach through simulation to develop realistic durations 
and use these durations as input to reschedule the CPM 
network. A heuristic technique was used to crash the activity 
durations and the total project duration. A total of 10 days was 
reduced from the original CPM schedule of 144 days which 
has considered uncertainties in the activity durations. This 
reduction increased the total direct cost of the project from 
$49,805 to $50,405. This indicates that about 13.9% decrease 
in total project duration is achieved by increasing the total 
cost of the project by just 1.2%, which is quite satisfactory. 
Developing a heuristic-based time-cost optimization problem 
by considering the risk and uncertainty of activity duration 
will guide decision-makers in making efficient and effective 
decisions in TCT optimization problems.
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